35 research outputs found

    Collective dynamics of social annotation

    Get PDF
    The enormous increase of popularity and use of the WWW has led in the recent years to important changes in the ways people communicate. An interesting example of this fact is provided by the now very popular social annotation systems, through which users annotate resources (such as web pages or digital photographs) with text keywords dubbed tags. Understanding the rich emerging structures resulting from the uncoordinated actions of users calls for an interdisciplinary effort. In particular concepts borrowed from statistical physics, such as random walks, and the complex networks framework, can effectively contribute to the mathematical modeling of social annotation systems. Here we show that the process of social annotation can be seen as a collective but uncoordinated exploration of an underlying semantic space, pictured as a graph, through a series of random walks. This modeling framework reproduces several aspects, so far unexplained, of social annotation, among which the peculiar growth of the size of the vocabulary used by the community and its complex network structure that represents an externalization of semantic structures grounded in cognition and typically hard to access

    Comparing the hierarchy of author given tags and repository given tags in a large document archive

    Full text link
    Folksonomies - large databases arising from collaborative tagging of items by independent users - are becoming an increasingly important way of categorizing information. In these systems users can tag items with free words, resulting in a tripartite item-tag-user network. Although there are no prescribed relations between tags, the way users think about the different categories presumably has some built in hierarchy, in which more special concepts are descendants of some more general categories. Several applications would benefit from the knowledge of this hierarchy. Here we apply a recent method to check the differences and similarities of hierarchies resulting from tags given by independent individuals and from tags given by a centrally managed repository system. The results from out method showed substantial differences between the lower part of the hierarchies, and in contrast, a relatively high similarity at the top of the hierarchies.Comment: 10 page

    Innovation and Nested Preferential Growth in Chess Playing Behavior

    Full text link
    Complexity develops via the incorporation of innovative properties. Chess is one of the most complex strategy games, where expert contenders exercise decision making by imitating old games or introducing innovations. In this work, we study innovation in chess by analyzing how different move sequences are played at the population level. It is found that the probability of exploring a new or innovative move decreases as a power law with the frequency of the preceding move sequence. Chess players also exploit already known move sequences according to their frequencies, following a preferential growth mechanism. Furthermore, innovation in chess exhibits Heaps' law suggesting similarities with the process of vocabulary growth. We propose a robust generative mechanism based on nested Yule-Simon preferential growth processes that reproduces the empirical observations. These results, supporting the self-similar nature of innovations in chess are important in the context of decision making in a competitive scenario, and extend the scope of relevant findings recently discovered regarding the emergence of Zipf's law in chess.Comment: 8 pages, 4 figures, accepted for publication in Europhysics Letters (EPL

    Modeling the emergence of universality in color naming patterns

    Get PDF
    The empirical evidence that human color categorization exhibits some universal patterns beyond superficial discrepancies across different cultures is a major breakthrough in cognitive science. As observed in the World Color Survey (WCS), indeed, any two groups of individuals develop quite different categorization patterns, but some universal properties can be identified by a statistical analysis over a large number of populations. Here, we reproduce the WCS in a numerical model in which different populations develop independently their own categorization systems by playing elementary language games. We find that a simple perceptual constraint shared by all humans, namely the human Just Noticeable Difference (JND), is sufficient to trigger the emergence of universal patterns that unconstrained cultural interaction fails to produce. We test the results of our experiment against real data by performing the same statistical analysis proposed to quantify the universal tendencies shown in the WCS [Kay P and Regier T. (2003) Proc. Natl. Acad. Sci. USA 100: 9085-9089], and obtain an excellent quantitative agreement. This work confirms that synthetic modeling has nowadays reached the maturity to contribute significantly to the ongoing debate in cognitive science.Comment: Supplementery Information available here http://www.pnas.org/content/107/6/2403/suppl/DCSupplementa

    Quantitative Analysis of Bloggers Collective Behavior Powered by Emotions

    Full text link
    Large-scale data resulting from users online interactions provide the ultimate source of information to study emergent social phenomena on the Web. From individual actions of users to observable collective behaviors, different mechanisms involving emotions expressed in the posted text play a role. Here we combine approaches of statistical physics with machine-learning methods of text analysis to study emergence of the emotional behavior among Web users. Mapping the high-resolution data from digg.com onto bipartite network of users and their comments onto posted stories, we identify user communities centered around certain popular posts and determine emotional contents of the related comments by the emotion-classifier developed for this type of texts. Applied over different time periods, this framework reveals strong correlations between the excess of negative emotions and the evolution of communities. We observe avalanches of emotional comments exhibiting significant self-organized critical behavior and temporal correlations. To explore robustness of these critical states, we design a network automaton model on realistic network connections and several control parameters, which can be inferred from the dataset. Dissemination of emotions by a small fraction of very active users appears to critically tune the collective states
    corecore