22 research outputs found

    Collective additive tree spanners for circle graphs and polygonal graphs

    Get PDF
    AbstractA graph G=(V,E) is said to admit a system of ÎŒ collective additive tree r-spanners if there is a system T(G) of at most ÎŒ spanning trees of G such that for any two vertices u,v of G a spanning tree T∈T(G) exists such that the distance in T between u and v is at most r plus their distance in G. In this paper, we examine the problem of finding “small” systems of collective additive tree r-spanners for small values of r on circle graphs and on polygonal graphs. Among other results, we show that every n-vertex circle graph admits a system of at most 2log32n collective additive tree 2-spanners and every n-vertex k-polygonal graph admits a system of at most 2log32k+7 collective additive tree 2-spanners. Moreover, we show that every n-vertex k-polygonal graph admits an additive (k+6)-spanner with at most 6n−6 edges and every n-vertex 3-polygonal graph admits a system of at most three collective additive tree 2-spanners and an additive tree 6-spanner. All our collective tree spanners as well as all sparse spanners are constructible in polynomial time

    Isometric Embeddings in Trees and Their Use in Distance Problems

    Get PDF
    International audienceWe present powerful techniques for computing the diameter, all the eccentricities, and other related distance problems on some geometric graph classes, by exploiting their "tree-likeness" properties. We illustrate the usefulness of our approach as follows: (1) We propose a subquadratic-time algorithm for computing all eccentricities on partial cubes of bounded lattice dimension and isometric dimension O(n^{0.5−Δ}). This is one of the first positive results achieved for the diameter problem on a subclass of partial cubes beyond median graphs. (2) Then, we obtain almost linear-time algorithms for computing all eccentricities in some classes of face-regular plane graphs, including benzenoid systems, with applications to chemistry. Previously, only a linear-time algorithm for computing the diameter and the center was known (and an O(n^{5/3})-time algorithm for computing all the eccentricities). (3) We also present an almost linear-time algorithm for computing the eccentricities in a polygon graph with an additive one-sided error of at most 2. (4) Finally, on any cube-free median graph, we can compute its absolute center in almost linear time. Independently from this work, BergĂ© and Habib have recently presented a linear-time algorithm for computing all eccentricities in this graph class (LAGOS'21), which also implies a linear-time algorithm for the absolute center problem. Our strategy here consists in exploiting the existence of some embeddings of these graphs in either a system or a product of trees, or in a single tree but where each vertex of the graph is embedded in a subset of nodes. While this may look like a natural idea, the way it can be done efficiently, which is our main technical contribution in the paper, is surprisingly intricate

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore