385 research outputs found

    Spectrum Sensing and Security Challenges and Solutions: Contemporary Affirmation of the Recent Literature

    Get PDF
    Cognitive radio (CR) has been recently proposed as a promising technology to improve spectrum utilization by enabling secondary access to unused licensed bands. A prerequisite to this secondary access is having no interference to the primary system. This requirement makes spectrum sensing a key function in cognitive radio systems. Among common spectrum sensing techniques, energy detection is an engaging method due to its simplicity and efficiency. However, the major disadvantage of energy detection is the hidden node problem, in which the sensing node cannot distinguish between an idle and a deeply faded or shadowed band. Cooperative spectrum sensing (CSS) which uses a distributed detection model has been considered to overcome that problem. On other dimension of this cooperative spectrum sensing, this is vulnerable to sensing data falsification attacks due to the distributed nature of cooperative spectrum sensing. As the goal of a sensing data falsification attack is to cause an incorrect decision on the presence/absence of a PU signal, malicious or compromised SUs may intentionally distort the measured RSSs and share them with other SUs. Then, the effect of erroneous sensing results propagates to the entire CRN. This type of attacks can be easily launched since the openness of programmable software defined radio (SDR) devices makes it easy for (malicious or compromised) SUs to access low layer protocol stacks, such as PHY and MAC. However, detecting such attacks is challenging due to the lack of coordination between PUs and SUs, and unpredictability in wireless channel signal propagation, thus calling for efficient mechanisms to protect CRNs. Here in this paper we attempt to perform contemporary affirmation of the recent literature of benchmarking strategies that enable the trusted and secure cooperative spectrum sensing among Cognitive Radios

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Effects of Cyclic Prefix Jamming Versus Noise Jamming in OFDM Signals

    Get PDF
    Signal jamming of an orthogonal frequency-division multiplexing (OFDM) signal is simulated in MATLAB. Two different means of jamming are used to see, which is a more efficient way to disrupt a signal using the same signal power. The first way is a basic additive white Gaussian noise (AWGN) jammer that equally jams the entire signal. The second way is an AWGN jammer that targets only the cyclic prefix (CP) of the signal. These two methods of jamming are simulated using different channel models and unknowns to get varying results. The three channel models used in the simulations are the no channel case, the simple multipath case, and the fading multipath case. The general trend shows that as the channel model becomes more complex, the difference in the effectiveness of each jamming technique becomes less. The unknown in this research is the symbol-time delay. Since OFDM signals are characterized by multipath reception, the signal arrives at a symbol-time delay which is known or unknown to the jamming signal and the receiver. Realistically, the symbol-time delay is unknown to each and in that case, a Maximum Likelihood (ML) Estimator is used to find the estimated symbol-time delay. This research simulates the symbol-time delay as a known and an unknown at the jammer and receiver. The general trend shows that jamming the cyclic prefix is more effective than noise jamming when the symbol-time delay is unknown to the receiver

    Adaptive Interference Removal for Un-coordinated Radar/Communication Co-existence

    Full text link
    Most existing approaches to co-existing communication/radar systems assume that the radar and communication systems are coordinated, i.e., they share information, such as relative position, transmitted waveforms and channel state. In this paper, we consider an un-coordinated scenario where a communication receiver is to operate in the presence of a number of radars, of which only a sub-set may be active, which poses the problem of estimating the active waveforms and the relevant parameters thereof, so as to cancel them prior to demodulation. Two algorithms are proposed for such a joint waveform estimation/data demodulation problem, both exploiting sparsity of a proper representation of the interference and of the vector containing the errors of the data block, so as to implement an iterative joint interference removal/data demodulation process. The former algorithm is based on classical on-grid compressed sensing (CS), while the latter forces an atomic norm (AN) constraint: in both cases the radar parameters and the communication demodulation errors can be estimated by solving a convex problem. We also propose a way to improve the efficiency of the AN-based algorithm. The performance of these algorithms are demonstrated through extensive simulations, taking into account a variety of conditions concerning both the interferers and the respective channel states

    Efficient Power Allocation Schemes for Hybrid Decode-Amplify-Forward Relay Based Wireless Cooperative Network

    Get PDF
    Cooperative communication in various wireless domains, such as cellular networks, sensor networks and wireless ad hoc networks, has gained significant interest recently. In cooperative network, relays between the source and the destination, form a virtual MIMO that creates spatial diversity at the destination, which overcomes the fading effect of wireless channels. Such relay assisted schemes have potential to increase the channel capacity and network coverage. Most current research on cooperative communication are focused broadly on efficient protocol design and analysis, resource allocation, relay selection and cross layer optimization. The first part of this research aims at introducing hybrid decode-amplify-forward (HDAF) relaying in a distributed Alamouti coded cooperative network. Performance of such adaptive relaying scheme in terms of symbol error rate (SER), outage probability and average channel capacity is derived theoretically and verified through simulation based study. This work is further extended to a generalized multi HDAF relaying cooperative frame work. Various efficient power allocation schemes such as maximized channel capacity based, minimized SER based and total power minimization based are proposed and their superiority in performance over the existing equal power allocation scheme is demonstrated in the simulation results. Due to the broadcast nature of wireless transmission, information privacy in wireless networks becomes a critical issue. In the context of physical layer security, the role of multi HDAF relaying based cooperative model with control jamming and multiple eavesdroppers is explored in the second part of the research. Performance evaluation parameters such as secrecy rate, secrecy outage and intercept probability are derived theoretically. Further the importance of the proposed power allocation schemes in enhancing the secrecy performance of the network in the presence of multiple eavesdroppers is studied in detail through simulation based study and analysis. For all the proposed power allocation schemes in this research, the optimization problems are defined under total power constraint and are solved using Lagrange multiplier method and also evolutionary algorithms such as Differential evolution and Invasive Weed Optimization are employed. Monte Carlo simulation based study is adopted throughout the research. It is concluded that HDAF relaying based wireless cooperative network with optimal power allocation schemes offers improved and reliable performance compared to conventional amplify forward and decode forward relaying schemes. Above research contributions will be applicable for future generation wireless cooperative networks

    Detection performance and mitigation techniques in CR networks

    Get PDF
    Pervasive wireless communications rely enormously on spectrum utilization; the increase in demand for new wireless services and their application has led to spectrum scarcity. Spectrum limitations can be resolved by cognitive radio (CR) which is a technology that allows secondary users (SUs) to use the spectrum when it is not occupied by primary users (PUs). In this thesis, the security issues that decrease CR performance are discussed; there are two major threats i.e. primary user emulation attack (PUEA) and spectrum sensing data falsification attack (SSDF). Firstly, the CR network (CRN) is simulated whereby PUs and SUs are presented in the system with the presence of multiple malicious users that are randomly located within a circle of radius (R). The simulation results, based on an analytical model, show that the false alarm probability is significantly affected by the network radius Rand malicious users' number, and it is proved that there is a range of R over which the PUEAs are most successful. Secondly, a transmitter verification scheme (direct scheme) and indirect trust scheme that considers the users' history are presented; the results proved that if the signal to noise ratio (SNR) is raised, correspondingly the t:rnstworthiness of the PU is considerably increased. Based on these two schemes, the trnstworthiness of the PU is much higher than that of the malicious user and because the indirect scheme considers the historical behaviour of the user, it improves the user's trustworthiness.Finally, cooperative spectrum sensing (CSS) approaches are proposed, namely, a trust based approach, a punishment based approach and a dedicated punishment based approach. It is proved that these proposed CSS approaches outperform the traditional majority scheme despite a high number of malicious users. In addition, the dedicated punishment approaches which punish only the malicious users outperform the other approaches
    corecore