250 research outputs found

    Securing the Internet of Things Communication Using Named Data Networking Approaches

    Get PDF
    The rapid advancement in sensors and their use in devices has led to the drastic increase of Internet-of-Things (IoT) device applications and usage. A fundamental requirement of an IoT-enabled ecosystem is the device’s ability to communicate with other devices, humans etc. IoT devices are usually highly resource constrained and come with varying capabilities and features. Hence, a host-based communication approach defined by the TCP/IP architecture relying on securing the communication channel between the hosts displays drawbacks especially when working in a highly chaotic environment (common with IoT applications). The discrepancies between requirements of the application and the network supporting the communication demands for a fundamental change in securing the communication in IoT applications. This research along with identifying the fundamental security problems in IoT device lifecycle in the context of secure communication also explores the use of a data-centric approach advocated by a modern architecture called Named Data Networking (NDN). The use of NDN modifies the basis of communication and security by defining data-centric security where the data chunks are secured directly and retrieved using specialized requests in a pull-based approach. This work also identifies the advantages of using semantically-rich names as the basis for IoT communication in the current client-driven environment and reinforces it with best-practices from the existing host-based approaches for such networks. We present in this thesis a number of solutions built to automate and securely onboard IoT devices; encryption, decryption and access control solutions based on semantically rich names and attribute-based schemes. We also provide the design details of solutions to sup- port trustworthy and conditionally private communication among highly resource constrained devices through specialized signing techniques and automated certificate generation and distribution with minimal use of the network resources. We also explore the design solutions for rapid trust establishment and vertically securing communication in applications including smart-grid operations and vehicular communication along with automated and lightweight certificate generation and management techniques. Through all these design details and exploration, we identify the applicability of the data-centric security techniques presented by NDN in securing IoT communication and address the shortcoming of the existing approaches in this area

    A Review on Internet of Things (IoT): Security and Privacy Requirements and the Solution Approaches

    Get PDF
    The world is undergoing a dramatic rapid transformation from isolated systems to ubiquitous Internet-based-enabled 2018;things2019; capable of interacting each other and generating data that can be analyzed to extract valuable information. This highly interconnected global network structure known as Internet of Things will enrich everyone2019;s life, increase business productivity, improve government efficiency, and the list just goes on. However, this new reality (IoT) built on the basis of Internet, contains new kind of challenges from a security and privacy perspective. Traditional security primitives cannot be directly applied to IoT technologies due to the different standards and communication stacks involved. Along with scalability and heterogeneity issues, major part of IoT infrastructure consists of resource constrained devices such as RFIDs and wireless sensor nodes. Therefore, a flexible infrastructure is required capable to deal with security and privacy issues in such a dynamic environment. This paper presents an overview of IoT, security and privacy challenges and the existing security solutions and identifying some open issues for future research

    A Novel Efficient Dynamic Throttling Strategy for Blockchain-Based Intrusion Detection Systems in 6G-Enabled VSNs

    Get PDF
    Vehicular Social Networks (VSNs) have emerged as a new social interaction paradigm, where vehicles can form social networks on the roads to improve the convenience/safety of passengers. VSNs are part of Vehicle to Everything (V2X) services, which is one of the industrial verticals in the coming sixth generation (6G) networks. The lower latency, higher connection density, and near-100% coverage envisaged in 6G will enable more efficient implementation of VSNs applications. The purpose of this study is to address the problem of lateral movements of attackers who could compromise one device in a VSN, given the large number of connected devices and services in VSNs and attack other devices and vehicles. This challenge is addressed via our proposed Blockchain-based Collaborative Distributed Intrusion Detection (BCDID) system with a novel Dynamic Throttling Strategy (DTS) to detect and prevent attackers’ lateral movements in VSNs. Our experiments showed how the proposed DTS improve the effectiveness of the BCDID system in terms of detection capabilities and handling queries three times faster than the default strategy with 350k queries tested. We concluded that our DTS strategy can increase transaction processing capacity in the BCDID system and improve its performance while maintaining the integrity of data on-chain

    Quality of Service improvements for real time multimedia applications using next generation network architectures and blockchain in Internet Service Provider cooperative scenario

    Get PDF
    Real time communications are becoming part of our daily life, requiring constrained requisites with the purpose of being enjoyed in harmony by end users. The factors ruling these requisites are Quality of Service parameters of the users' Internet connections. Achieving a satisfactory QoS level for real time communications depends on parameters that are strongly influenced by the quality of the network connections among the Internet Service Providers, which are located in the path between final users and Over The Top service providers that are supplying them with real time services. Final users can be: business people having real time videoconferences, or adopting crytpocurrencies in their exchanges, videogamers playing online games together with others residing in other countries, migrants talking with their relatives or watching their children growing up in their home countries, people with disabilities adopting tecnologies to help them, doctors performing remote surgeries, manufacturers adopting augmented reality devices to perform dangerous tasks. Each of them performing their daily activities are requiring specific QoS parameters to their ISPs, that nowadays seem to be unable to provide them with a satisfactory QoS level for these kinds of real time services. Through the adoption of next generation networks, such as the Information Centric Networking, it would be possible to overcome the QoS problems that nowadays are experienced. By adopting Blockchain technologies, in several use cases, it would be possible to improve those security aspects related to the non-temperability of information and privacy. I started this thesis analyzing next generation architectures enabling real time multimedia communications. In Software Defined Networking, Named Data Networking and Community Information Centric Networking, I highlighted potential approaches to solve QoS problems that are affecting real time multimedia applications. During my experiments I found that applications able to transmit high quality videos, such as 4k or 8k videos, or to directly interact with devices AR/VR enabled are missing for both ICN approaches. Then I proposed a REST interface for the enforcing of a specific QoS parameter, the round trip time (RTT) taking into consideration the specific use case of a game company that connects with the same telecommunication company of the final user. Supposing that the proposed REST APIs have been deployed in the game company and in the ISP, when one or more users are experiencing lag, the game company will try to ask the ISP to reduce the RTT for that specific user or that group of users. This request can be done by performing a call to a method where IP address(es) and the maximum RTT desired are passed. I also proposed other methods, through which it would be possible to retrieve information about the QoS parameters, and exchange, if necessary, an exceeding parameter in change of another one. The proposed REST APIs can also be used in more complex scenarios, where ISPs along the path are chained together, in order to improve the end to end QoS among Over The Top service provider and final users. To store the information exchanged by using the proposed REST APIs, I proposed to adopt a permissioned blockchain, analizying the ISPs cooperative use case with Hyperledger Fabric, where I proposed the adoption of the Proof of Authority consensus algorithm, to increase the throughput in terms of transactions per second. In a specific case that I examined, I am proposing a combination of Information Centric Networking and Blockchain, in an architecture where ISPs are exchanging valuable information regarding final Users, to improve their QoS parameters. I also proposed my smart contract for the gaming delay use case, that can be used to rule the communication among those ISPs that are along the path among OTT and final users. An extension of this work can be done, by defining billing costs for the QoS improvements

    Blockchain Application on the Internet of Vehicles (IoV)

    Full text link
    With the rapid development of the Internet of Things (IoT) and its potential integration with the traditional Vehicular Ad-Hoc Networks (VANETs), we have witnessed the emergence of the Internet of Vehicles (IoV), which promises to seamlessly integrate into smart transportation systems. However, the key characteristics of IoV, such as high-speed mobility and frequent disconnections make it difficult to manage its security and privacy. The Blockchain, as a distributed tamper-resistant ledge, has been proposed as an innovative solution that guarantees privacy-preserving yet secure schemes. In this paper, we review recent literature on the application of blockchain to IoV, in particular, and intelligent transportation systems in general

    Federated Learning in Intelligent Transportation Systems: Recent Applications and Open Problems

    Full text link
    Intelligent transportation systems (ITSs) have been fueled by the rapid development of communication technologies, sensor technologies, and the Internet of Things (IoT). Nonetheless, due to the dynamic characteristics of the vehicle networks, it is rather challenging to make timely and accurate decisions of vehicle behaviors. Moreover, in the presence of mobile wireless communications, the privacy and security of vehicle information are at constant risk. In this context, a new paradigm is urgently needed for various applications in dynamic vehicle environments. As a distributed machine learning technology, federated learning (FL) has received extensive attention due to its outstanding privacy protection properties and easy scalability. We conduct a comprehensive survey of the latest developments in FL for ITS. Specifically, we initially research the prevalent challenges in ITS and elucidate the motivations for applying FL from various perspectives. Subsequently, we review existing deployments of FL in ITS across various scenarios, and discuss specific potential issues in object recognition, traffic management, and service providing scenarios. Furthermore, we conduct a further analysis of the new challenges introduced by FL deployment and the inherent limitations that FL alone cannot fully address, including uneven data distribution, limited storage and computing power, and potential privacy and security concerns. We then examine the existing collaborative technologies that can help mitigate these challenges. Lastly, we discuss the open challenges that remain to be addressed in applying FL in ITS and propose several future research directions

    SoK: Distributed Computing in ICN

    Full text link
    Information-Centric Networking (ICN), with its data-oriented operation and generally more powerful forwarding layer, provides an attractive platform for distributed computing. This paper provides a systematic overview and categorization of different distributed computing approaches in ICN encompassing fundamental design principles, frameworks and orchestration, protocols, enablers, and applications. We discuss current pain points in legacy distributed computing, attractive ICN features, and how different systems use them. This paper also provides a discussion of potential future work for distributed computing in ICN.Comment: 10 pages, 3 figures, 1 table. Accepted by ACM ICN 202
    • …
    corecore