350 research outputs found

    Joint Deep Modeling of Users and Items Using Reviews for Recommendation

    Full text link
    A large amount of information exists in reviews written by users. This source of information has been ignored by most of the current recommender systems while it can potentially alleviate the sparsity problem and improve the quality of recommendations. In this paper, we present a deep model to learn item properties and user behaviors jointly from review text. The proposed model, named Deep Cooperative Neural Networks (DeepCoNN), consists of two parallel neural networks coupled in the last layers. One of the networks focuses on learning user behaviors exploiting reviews written by the user, and the other one learns item properties from the reviews written for the item. A shared layer is introduced on the top to couple these two networks together. The shared layer enables latent factors learned for users and items to interact with each other in a manner similar to factorization machine techniques. Experimental results demonstrate that DeepCoNN significantly outperforms all baseline recommender systems on a variety of datasets.Comment: WSDM 201

    A deep learning-based hybrid model for recommendation generation and ranking

    Get PDF
    A recommender system plays a vital role in information filtering and retrieval, and its application is omnipresent in many domains. There are some drawbacks such as the cold-start and the data sparsity problems which affect the performance of the recommender model. Various studies help with drastically improving the performance of recommender systems via unique methods, such as the traditional way of performing matrix factorization (MF) and also applying deep learning (DL) techniques in recent years. By using DL in the recommender system, we can overcome the difficulties of collaborative filtering. DL now focuses mainly on modeling content descriptions, but those models ignore the main factor of user–item interaction. In the proposed hybrid Bayesian stacked auto-denoising encoder (HBSADE) model, it recognizes the latent interests of the user and analyzes contextual reviews that are performed through the MF method. The objective of the model is to identify the user’s point of interest, recommending products/services based on the user’s latent interests. The proposed two-stage novel hybrid deep learning-based collaborative filtering method explores the user’s point of interest, captures the communications between items and users and provides better recommendations in a personalized way. We used a multilayer neural network to manipulate the nonlinearities between the user and item communication from data. Experiments were to prove that our HBSADE outperforms existing methodologies over Amazon-b and Book-Crossing datasets

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    μ-cf2vec:  Representation Learning for Personalized Algorithm Selection in Recommender Systems

    Get PDF
    Neste momento Collaborative filtering é a tecnica que permite alcancar resultados do estado daarte em problemas de sistemas de recomendação. Existem várias implementações desta técnica cada uma com as suas características.Collaborative filtering has becoming standard approach to achieve state of the art results in rec-ommendation systems problems. There are multiples implementations of this technique, each onethem with its own characteristics
    • …
    corecore