13 research outputs found

    Coinduction up to in a fibrational setting

    Get PDF
    Bisimulation up-to enhances the coinductive proof method for bisimilarity, providing efficient proof techniques for checking properties of different kinds of systems. We prove the soundness of such techniques in a fibrational setting, building on the seminal work of Hermida and Jacobs. This allows us to systematically obtain up-to techniques not only for bisimilarity but for a large class of coinductive predicates modelled as coalgebras. By tuning the parameters of our framework, we obtain novel techniques for unary predicates and nominal automata, a variant of the GSOS rule format for similarity, and a new categorical treatment of weak bisimilarity

    The Proof Technique of Unique Solutions of Contractions

    Get PDF
    International audienceWe review some recent work aimed at understanding proof techniques for behavioural equivalence on processes based on the concept of unique solution of equations. The schema of equations is refined to that of contraction, based on partial orders rather than equalities

    Up-To Techniques for Behavioural Metrics via Fibrations

    Get PDF
    Up-to techniques are a well-known method for enhancing coinductive proofs of behavioural equivalences. We introduce up-to techniques for behavioural metrics between systems modelled as coalgebras and we provide abstract results to prove their soundness in a compositional way. In order to obtain a general framework, we need a systematic way to lift functors: we show that the Wasserstein lifting of a functor, introduced in a previous work, corresponds to a change of base in a fibrational sense. This observation enables us to reuse existing results about soundness of up-to techniques in a fibrational setting. We focus on the fibrations of predicates and relations valued in a quantale, for which pseudo-metric spaces are an example. To illustrate our approach we provide an example on distances between regular languages

    The Power of Convex Algebras

    Get PDF
    Probabilistic automata (PA) combine probability and nondeterminism. They can be given different semantics, like strong bisimilarity, convex bisimilarity, or (more recently) distribution bisimilarity. The latter is based on the view of PA as transformers of probability distributions, also called belief states, and promotes distributions to first-class citizens. We give a coalgebraic account of the latter semantics, and explain the genesis of the belief-state transformer from a PA. To do so, we make explicit the convex algebraic structure present in PA and identify belief-state transformers as transition systems with state space that carries a convex algebra. As a consequence of our abstract approach, we can give a sound proof technique which we call bisimulation up-to convex hull.Comment: Full (extended) version of a CONCUR 2017 paper, to be submitted to LMC

    Behavioural equivalences for timed systems

    Full text link
    Timed transition systems are behavioural models that include an explicit treatment of time flow and are used to formalise the semantics of several foundational process calculi and automata. Despite their relevance, a general mathematical characterisation of timed transition systems and their behavioural theory is still missing. We introduce the first uniform framework for timed behavioural models that encompasses known behavioural equivalences such as timed bisimulations, timed language equivalences as well as their weak and time-abstract counterparts. All these notions of equivalences are naturally organised by their discriminating power in a spectrum. We prove that this result does not depend on the type of the systems under scrutiny: it holds for any generalisation of timed transition system. We instantiate our framework to timed transition systems and their quantitative extensions such as timed probabilistic systems

    Diacritical Companions

    Get PDF
    International audienceCoinductive reasoning in terms of bisimulations is in practice routinely supported by carefully crafted up-to techniques that can greatly simplify proofs. However, designing and proving such bisimulation enhancements sound can be challenging, especially when striving for modularity. In this article, we present a theory of up-to techniques that builds on the notion of companion introduced by Pous and that extends our previous work which allows for powerful up-to techniques defined in terms of diacritical progress of relations. The theory of diacritical companion that we put forward works in any complete lattice and makes it possible to modularly prove soundness of up-to techniques which rely on the distinction between passive and active progresses, such as up to context in λ-calculi with control operators and extensionality

    Combining Semilattices and Semimodules

    Get PDF
    We describe the canonical weak distributive law ή ⁣:SP→PS\delta \colon \mathcal S \mathcal P \to \mathcal P \mathcal S of the powerset monad P\mathcal P over the SS-left-semimodule monad S\mathcal S, for a class of semirings SS. We show that the composition of P\mathcal P with S\mathcal S by means of such ή\delta yields almost the monad of convex subsets previously introduced by Jacobs: the only difference consists in the absence in Jacobs's monad of the empty convex set. We provide a handy characterisation of the canonical weak lifting of P\mathcal P to EM(S)\mathbb{EM}(\mathcal S) as well as an algebraic theory for the resulting composed monad. Finally, we restrict the composed monad to finitely generated convex subsets and we show that it is presented by an algebraic theory combining semimodules and semilattices with bottom, which are the algebras for the finite powerset monad Pf\mathcal P_f
    corecore