103,754 research outputs found

    Standard Model Contributions to the Neutrino Index of Refraction in the Early Universe

    Full text link
    With the standard electroweak interactions, the lowest-order coherent forward scattering amplitudes of neutrinos in a CP symmetric medium (such as the early universe) are zero, and the index of refraction of a propagating neutrino can only arise from the expansion of gauge boson propagators, from radiative corrections, and from new physics interactions. Motivated by nucleosynthesis constraints on a possible sterile neutrino (suggested by the solar neutrino deficit and a possible 17 keV17\ keV neutrino), we calculate the standard model contributions to the neutrino index of refraction in the early universe, focusing on the period when the temperature was of the order of a few MeVMeV. We find sizable radiative corrections to the tree level result obtained by the expansion of the gauge boson propagator. For νe+e(eˉ)νe+e(eˉ)\nu_e+e(\bar{e})\to \nu_e+e(\bar{e}) the leading log correction is about +10%+10\%, while for νe+νe(νˉe)νe+νe(νˉe)\nu_e+\nu_e(\bar{\nu}_e)\to \nu_e+\nu_e(\bar{\nu}_e) the correction is about +20%+20\%. Depending on the family mixing (if any), effects from different family scattering can be dominated by radiative corrections. The result for ν+γν+γ\nu+\gamma\to\nu+\gamma is zero at one-loop level, even if neutrinos are massive. The cancellation of infrared divergence in a coherent process is also discussed.Comment: 46pp, 13 figures (not included), UPR-0495

    Stimulated Raman adiabatic passage-like protocols for amplitude transfer generalize to many bipartite graphs

    Get PDF
    Adiabatic passage techniques, used to drive a system from one quantum state into another, find widespread application in physics and chemistry. We focus on techniques to spatially transport a quantum amplitude over a strongly coupled system, such as STImulated Raman Adiabatic Passage (STIRAP) and Coherent Tunnelling by Adiabatic Passage (CTAP). Previous results were shown to work on certain graphs, such as linear chains, square and triangular lattices, and branched chains. We prove that similar protocols work much more generally, in a large class of (semi-)bipartite graphs. In particular, under random couplings, adiabatic transfer is possible on graphs that admit a perfect matching both when the sender is removed and when the receiver is removed. Many of the favorable stability properties of STIRAP/CTAP are inherited, and our results readily apply to transfer between multiple potential senders and receivers. We numerically test transfer between the leaves of a tree, and find surprisingly accurate transfer, especially when straddling is used. Our results may find applications in short-distance communication between multiple quantum computers, and open up a new question in graph theory about the spectral gap around the value 0.Comment: 17 pages, 3 figures. v2 is made more mathematical and precise than v

    Quantum gas-liquid condensation in an attractive Bose gas

    Get PDF
    Gas-liquid condensation (GLC) in an attractive Bose gas is studied on the basis of statistical mechanics. Using some results in combinatorial mathematics, the following are derived: (1) With decreasing temperature, the Bose-statistical coherence grows in the many-body wave function, which gives rise to the divergence of the grand partition function prior to Bose-Einstein condensation. It is a quantum-mechanical analogue to the GLC in a classical gas (quantum GLC). (2) This GLC is triggered by the bosons with zero momentum. Compared with the classical GLC, an incomparably weaker attractive force creates it. For the system showing the quantum GLC, we discuss a cold helium 4 gas at sufficiently low pressure.Comment: 12 pages, 8 figure

    Group field theories

    Full text link
    Group field theories are particular quantum field theories defined on D copies of a group which reproduce spin foam amplitudes on a space-time of dimension D. In these lecture notes, we present the general construction of group field theories, merging ideas from tensor models and loop quantum gravity. This lecture is organized as follows. In the first section, we present basic aspects of quantum field theory and matrix models. The second section is devoted to general aspects of tensor models and group field theory and in the last section we examine properties of the group field formulation of BF theory and the EPRL model. We conclude with a few possible research topics, like the construction of a continuum limit based on the double scaling limit or the relation to loop quantum gravity through Schwinger-Dyson equationsComment: Lectures given at the "3rd Quantum Gravity and Quantum Geometry School", march 2011, Zakopan

    From data towards knowledge: Revealing the architecture of signaling systems by unifying knowledge mining and data mining of systematic perturbation data

    Get PDF
    Genetic and pharmacological perturbation experiments, such as deleting a gene and monitoring gene expression responses, are powerful tools for studying cellular signal transduction pathways. However, it remains a challenge to automatically derive knowledge of a cellular signaling system at a conceptual level from systematic perturbation-response data. In this study, we explored a framework that unifies knowledge mining and data mining approaches towards the goal. The framework consists of the following automated processes: 1) applying an ontology-driven knowledge mining approach to identify functional modules among the genes responding to a perturbation in order to reveal potential signals affected by the perturbation; 2) applying a graph-based data mining approach to search for perturbations that affect a common signal with respect to a functional module, and 3) revealing the architecture of a signaling system organize signaling units into a hierarchy based on their relationships. Applying this framework to a compendium of yeast perturbation-response data, we have successfully recovered many well-known signal transduction pathways; in addition, our analysis have led to many hypotheses regarding the yeast signal transduction system; finally, our analysis automatically organized perturbed genes as a graph reflecting the architect of the yeast signaling system. Importantly, this framework transformed molecular findings from a gene level to a conceptual level, which readily can be translated into computable knowledge in the form of rules regarding the yeast signaling system, such as "if genes involved in MAPK signaling are perturbed, genes involved in pheromone responses will be differentially expressed"

    How to Suppress Dark States in Quantum Networks and Bio-Engineered Structures

    Get PDF
    Transport across quantum networks underlies many problems, from state transfer on a spin network to energy transport in photosynthetic complexes. However, networks can contain dark subspaces that block the transportation, and various methods used to enhance transfer on quantum networks can be viewed as equivalently avoiding, modifying, or destroying the dark subspace. Here, we exploit graph theoretical tools to identify the dark subspaces and show that asymptotically almost surely they do not exist for large networks, while for small ones they can be suppressed by properly perturbing the coupling rates between the network nodes. More specifically, we apply these results to describe the recently experimentally observed and robust transport behaviour of the electronic excitation travelling on a genetically-engineered light-harvesting cylinder (M13 virus) structure. We believe that these mainly topological tools may allow us to better infer which network structures and dynamics are more favourable to enhance transfer of energy and information towards novel quantum technologies.Comment: 9 pages, 6 figure
    corecore