82 research outputs found

    Estimation of the normalized coherency matrix through the SIRV model. Application to high resolution POLSAR data

    Get PDF
    8 pagesInternational audienceIn the context of non-Gaussian polarimetric clutter models, this paper presents an application of the recent advances in the field of Spherically Invariant Random Vectors (SIRV) modelling for coherency matrix estimation in heterogeneous clutter. The complete description of the POLSAR data set is achieved by estimating the span and the normalized coherency independently. The normalized coherency describes the polarimetric diversity, while the span indicates the total received power. The main advantages of the proposed Fixed Point estimator are that it does not require any "a priori" information about the probability density function of the texture (or span) and it can be directly applied on adaptive neighbourhoods. Interesting results are obtained when coupling this Fixed Point estimator with an adaptive spatial support based on the scalar span information. Based on the SIRV model, a new maximum likelihood distance measure is introduced for unsupervised POLSAR classification. The proposed method is tested with airborne POLSAR images provided by the RAMSES system. Results of entropy/alpha/anisotropy decomposition, followed by unsupervised classification, allow discussing the use of the normalized coherency and the span as two separate descriptors of POLSAR data sets

    Optimal Parameter Estimation in Heterogeneous Clutter for High Resolution Polarimetric SAR Data

    No full text
    International audienceThis letter presents a new estimation scheme for optimally deriving clutter parameters with high-resolution polarimetric synthetic aperture radar (POLSAR) data. The heterogeneous clutter in POLSAR data is described by the spherically invariant random vector model. Three parameters are introduced for the high-resolution POLSAR data clutter: the span, the normalized texture, and the speckle normalized covariance matrix. The asymptotic distribution of the novel span estimator is investigated. A novel heterogeneity test for the POLSAR clutter is also discussed. The proposed method is tested with airborne POLSAR images provided by the Office National d'Études et de Recherches Aerospatiales Radar Aéroporté Multi-spectral d'Etude des Signatures system

    H/α Unsupervised Classification for Highly Textured Polinsar Images using Information Geometry of Covariance Matrices

    No full text
    International audienceWe discuss in the paper the use of the Riemannian mean given by the differential geometric tools. This geometric mean is used in this paper for computing the class centers in the polarimetric H/α unsupervised classification process. We show that the class centers remain more stable during the iteration process, leading to a different interpretation of the H/α /A classification. This technique can be applied both on classical Sample Covariance Matrix and on Fixed Point covariance matrices. Used jointly with the Fixed Point covariance matrix estimate, this technique can give more robust results when dealing with high resolution and highly textured polarimetric SAR images classification

    Blind Source Separation in Polarimetric SAR Interferometry

    No full text
    International audiencePolarimetric incoherent target decomposition aims in access-ing physical parameters of illuminated scatters through the analysis of target coherence or covariance matrix. In this framework, Independent Component Analysis (ICA) was recently proposed as an alternative method to Eigenvector decomposition to better interpret non-Gaussian heterogeneous clutter (inherent to high resolution SAR systems). Until now, the two main drawbacks reported of the aforementioned method are the greater number of samples required for an unbiased estimation, when compared to classical Eigenvector decomposition and the inability to be employed in scenarios under Gaussian clutter assumption. First, a Monte Carlo approach is performed in order to investigate the bias in estimating the Touzi Target Scattering Vector Model (TSVM) parameters when ICA is employed. A RAMSES X-band image acquired over Brétigny, France is taken into consideration to investigate the bias estimation under different scenarios. Finally, some results in terms of POLinSAR coherence optimization [1] in the context of ICA are proposed

    On the Extension of the Product Model in Polsar Processing for Unsupervised Classification Using Information Geometry of Covariance Matrices

    No full text
    International audienceWe discuss in the paper the use of the Riemannian mean given by the differential geometric tools. This geometric mean is used in this paper for computing the centers of class in the polarimetric H/α unsupervised classification process. We can show that the centers of class will remain more stable during the iteration process, leading to a different interpretation of the H/α/A classification. This technique can be applied both on classical SCM and on Fixed Point covariance matrices. Used jointly with the Fixed Point CM estimate, this technique can give nice results when dealing with high resolution and highly textured polarimetric SAR images classification

    Evaluation of Multilook Effect in ICA Based ICTD for PolSAR Data Analysis

    No full text
    International audiencePolarimetric incoherent target decomposition aims in accessing physical parameters of illuminated scatters through the analysis of target coherence or covariance matrix. In this framework, Independent Component Analysis (ICA) was recently proposed as an alternative method to eigenvector decomposition to better interpret non-Gaussian heterogeneous clutter (inherent to high resolution SAR systems). In this paper a Monte Carlo approach is performed in order to investigate the bias in estimating Touzi's Target Scattering Vector Model parameters when ICA is employed. Simulated data and data from the P-band airborne dataset acquired by the Office National d'tudes et de Recherches Arospatiales (ON-ERA) over the French Guiana in 2009 in the frame of the European Space Agency campaign TropiSAR are taken into consideration

    On the use of the l(2)-norm for texture analysis of polarimetric SAR data

    Get PDF
    In this paper, the use of the l2-norm, or Span, of the scattering vectors is suggested for texture analysis of polarimetric synthetic aperture radar (SAR) data, with the benefits that we need neither an analysis of the polarimetric channels separately nor a filtering of the data to analyze the statistics. Based on the product model, the distribution of the l2-norm is studied. Closed expressions of the probability density functions under the assumptions of several texture distributions are provided. To utilize the statistical properties of the l2-norm, quantities including normalized moments and log-cumulants are derived, along with corresponding estimators and estimation variances. Results on both simulated and real SAR data show that the use of statistics based on the l2-norm brings advantages in several aspects with respect to the normalized intensity moments and matrix variate log-cumulants.Peer ReviewedPostprint (published version

    Statistical Classification for Heterogeneous Polarimetric SAR Images

    No full text
    International audienceThis paper presents a general approach for high-resolution polarimetric SAR data classification in heterogeneous clutter, based on a statistical test of equality of covariance matrices. The Spherically Invariant Random Vector (SIRV) model is used to describe the clutter. Several distance measures, including classical ones used in standard classification methods, can be derived from the general test. The new approach provide a threshold over which pixels are rejected from the image, meaning they are not sufficiently "close" from any existing class. A distance measure using this general approach is derived and tested on a high-resolution polarimetric data set acquired by the ONERA RAMSES system. It is compared to the results of the classical decomposition and Wishart classifier under Gaussian and SIRV assumption. Results show that the new approach rejects all pixels from heterogeneous parts of the scene and classifies its Gaussian parts

    Statistical modeling of polarimetric SAR data: a survey and challenges

    Get PDF
    Knowledge of the exact statistical properties of the signal plays an important role in the applications of Polarimetric Synthetic Aperture Radar (PolSAR) data. In the last three decades, a considerable research effort has been devoted to finding accurate statistical models for PolSAR data, and a number of distributions have been proposed. In order to see the differences of various models and to make a comparison among them, a survey is provided in this paper. Texture models, which could capture the non-Gaussian behavior observed in high resolution data, and yet keep a compact mathematical form, are mainly explained. Probability density functions for the single look data and the multilook data are reviewed, as well as the advantages and applicable context of those models. As a summary, challenges in the area of statistical analysis of PolSAR data are also discussed.Peer ReviewedPostprint (published version

    Hierarchical Segmentation of Polarimetric SAR Images Using Heterogeneous Clutter Models

    Get PDF
    International audienceIn this paper, heterogeneous clutter models are used to describe polarimetric synthetic aperture radar (PolSAR) data. The KummerU distribution is introduced to model the PolSAR clutter. Then, a detailed analysis is carried out to evaluate the potential of this new multivariate distribution. It is implemented in a hierarchical maximum likelihood segmentation algorithm. The segmentation results are shown on both synthetic and high-resolution PolSAR data at the X- and L-bands. Finally, some methods are examined to determine automatically the "optimal" number of segments in the final partition
    corecore