205 research outputs found

    Index

    Get PDF

    On the Suitability of the Bandler–Kohout Subproduct as an Inference Mechanism

    Get PDF
    Fuzzy relational inference (FRI) systems form an important part of approximate reasoning schemes using fuzzy sets. The compositional rule of inference (CRI), which was introduced by Zadeh, has attracted the most attention so far. In this paper, we show that the FRI scheme that is based on the Bandler-Kohout (BK) subproduct, along with a suitable realization of the fuzzy rules, possesses all the important properties that are cited in favor of using CRI, viz., equivalent and reasonable conditions for their solvability, their interpolative properties, and the preservation of the indistinguishability that may be inherent in the input fuzzy sets. Moreover, we show that under certain conditions, the equivalence of first-infer-then-aggregate (FITA) and first-aggregate-then-infer (FATI) inference strategies can be shown for the BK subproduct, much like in the case of CRI. Finally, by addressing the computational complexity that may exist in the BK subproduct, we suggest a hierarchical inferencing scheme. Thus, this paper shows that the BK-subproduct-based FRI is as effective and efficient as the CRI itself

    Coherence of radial implicative fuzzy systems with nominal consequents, Journal of Telecommunications and Information Technology, 2006, nr 4

    Get PDF
    In the paper we are interested in the question of coherence of radial implicative fuzzy systems with nominal consequents (radial I-FSs with NCs). Implicative fuzzy systems are fuzzy systems employing residuated fuzzy implications for representation of IF-THEN structure of their rules. Radial fuzzy systems are fuzzy systems exhibiting the radial property in antecedents of their rules. The property simplifies computational model of radial systems and makes the investigation of their properties more tractable. A fuzzy system has nominal consequents if its output is defined on a finite unordered set of possible actions which are generally quantitatively incomparable. The question of coherence is the question of under which conditions we are assured that regardless the input to the system is, an output of the system exists, i.e., the output is non-empty. In other words, a fuzzy system is coherent if it has no contradictory rules in its rule base. In the paper we state sufficient conditions for a radial I-FS with NCs to be coherent

    Multispace & Multistructure. Neutrosophic Transdisciplinarity (100 Collected Papers of Sciences), Vol. IV

    Get PDF
    The fourth volume, in my book series of “Collected Papers”, includes 100 published and unpublished articles, notes, (preliminary) drafts containing just ideas to be further investigated, scientific souvenirs, scientific blogs, project proposals, small experiments, solved and unsolved problems and conjectures, updated or alternative versions of previous papers, short or long humanistic essays, letters to the editors - all collected in the previous three decades (1980-2010) – but most of them are from the last decade (2000-2010), some of them being lost and found, yet others are extended, diversified, improved versions. This is an eclectic tome of 800 pages with papers in various fields of sciences, alphabetically listed, such as: astronomy, biology, calculus, chemistry, computer programming codification, economics and business and politics, education and administration, game theory, geometry, graph theory, information fusion, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, psychology, quantum physics, scientific research methods, and statistics. It was my preoccupation and collaboration as author, co-author, translator, or cotranslator, and editor with many scientists from around the world for long time. Many topics from this book are incipient and need to be expanded in future explorations

    NEUTROSOPHIC LOGIC, WAVE MECHANICS, AND OTHER STORIES

    Get PDF
    There is beginning for anything; we used to hear that phrase. The same wisdom word applies to the authors too. What began in 2005 as a short email on some ideas related to interpretation of the Wave Mechanics results in a number of papers and books up to now. Some of these papers can be found in Progress in Physics or elsewhere. It is often recognized that when a mathematician meets a physics-inclined mind then the result is either a series of endless debates or publication. In this story, authors preferred to publish rather than perish. Therefore, the purpose with this book is to present a selection of published papers in a compilation which enable the readers to find some coherent ideas which appear in those articles. For this reason, the ordering of the papers here is based on categories of ideas

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected Works), Vol. 4

    Get PDF
    The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals. First Part of this book presents the theoretical advancement of DSmT, dealing with Belief functions, conditioning and deconditioning, Analytic Hierarchy Process, Decision Making, Multi-Criteria, evidence theory, combination rule, evidence distance, conflicting belief, sources of evidences with different importance and reliabilities, importance of sources, pignistic probability transformation, Qualitative reasoning under uncertainty, Imprecise belief structures, 2-Tuple linguistic label, Electre Tri Method, hierarchical proportional redistribution, basic belief assignment, subjective probability measure, Smarandache codification, neutrosophic logic, Evidence theory, outranking methods, Dempster-Shafer Theory, Bayes fusion rule, frequentist probability, mean square error, controlling factor, optimal assignment solution, data association, Transferable Belief Model, and others. More applications of DSmT have emerged in the past years since the apparition of the third book of DSmT 2009. Subsequently, the second part of this volume is about applications of DSmT in correlation with Electronic Support Measures, belief function, sensor networks, Ground Moving Target and Multiple target tracking, Vehicle-Born Improvised Explosive Device, Belief Interacting Multiple Model filter, seismic and acoustic sensor, Support Vector Machines, Alarm classification, ability of human visual system, Uncertainty Representation and Reasoning Evaluation Framework, Threat Assessment, Handwritten Signature Verification, Automatic Aircraft Recognition, Dynamic Data-Driven Application System, adjustment of secure communication trust analysis, and so on. Finally, the third part presents a List of References related with DSmT published or presented along the years since its inception in 2004, chronologically ordered

    Bandler-Kohout Subproduct with Yager’s Families of Fuzzy Implications: A Comprehensive Study

    Get PDF
    Approximate reasoning schemes involving fuzzy sets are one of the best known applications of fuzzy logic in the wider sense. Fuzzy Inference Systems (FIS) or Fuzzy Inference Mechanisms (FIM) have many degrees of freedom, viz., the underlying fuzzy partition of the input and output spaces, the fuzzy logic operations employed, the fuzzification and defuzzification mechanism used, etc. This freedom gives rise to a variety of FIS with differing capabilities

    Fast and robust image feature matching methods for computer vision applications

    Get PDF
    Service robotic systems are designed to solve tasks such as recognizing and manipulating objects, understanding natural scenes, navigating in dynamic and populated environments. It's immediately evident that such tasks cannot be modeled in all necessary details as easy as it is with industrial robot tasks; therefore, service robotic system has to have the ability to sense and interact with the surrounding physical environment through a multitude of sensors and actuators. Environment sensing is one of the core problems that limit the deployment of mobile service robots since existing sensing systems are either too slow or too expensive. Visual sensing is the most promising way to provide a cost effective solution to the mobile robot sensing problem. It's usually achieved using one or several digital cameras placed on the robot or distributed in its environment. Digital cameras are information rich sensors and are relatively inexpensive and can be used to solve a number of key problems for robotics and other autonomous intelligent systems, such as visual servoing, robot navigation, object recognition, pose estimation, and much more. The key challenges to taking advantage of this powerful and inexpensive sensor is to come up with algorithms that can reliably and quickly extract and match the useful visual information necessary to automatically interpret the environment in real-time. Although considerable research has been conducted in recent years on the development of algorithms for computer and robot vision problems, there are still open research challenges in the context of the reliability, accuracy and processing time. Scale Invariant Feature Transform (SIFT) is one of the most widely used methods that has recently attracted much attention in the computer vision community due to the fact that SIFT features are highly distinctive, and invariant to scale, rotation and illumination changes. In addition, SIFT features are relatively easy to extract and to match against a large database of local features. Generally, there are two main drawbacks of SIFT algorithm, the first drawback is that the computational complexity of the algorithm increases rapidly with the number of key-points, especially at the matching step due to the high dimensionality of the SIFT feature descriptor. The other one is that the SIFT features are not robust to large viewpoint changes. These drawbacks limit the reasonable use of SIFT algorithm for robot vision applications since they require often real-time performance and dealing with large viewpoint changes. This dissertation proposes three new approaches to address the constraints faced when using SIFT features for robot vision applications, Speeded up SIFT feature matching, robust SIFT feature matching and the inclusion of the closed loop control structure into object recognition and pose estimation systems. The proposed methods are implemented and tested on the FRIEND II/III service robotic system. The achieved results are valuable to adapt SIFT algorithm to the robot vision applications

    Journal of Telecommunications and Information Technology, 2006, nr 4

    Get PDF
    kwartalni
    corecore