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On the suitability of the Bandler-Kohout subproduct
as an inference mechanism
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Abstract—Fuzzy Relational Inference (FRI) systems form an
important part of approximate reasoning schemes using fuzzy
sets. Especially, the compositional rule of inference (CRI) in-
troduced by Zadeh has attracted the most attention so far. In
this work we show that the FRI scheme based on the Bandler-
Kohout subproduct along with a suitable realisation of the fuzzy
rules, does possess all the important properties cited in favor of
using CRI, viz., equivalent and reasonable conditions for their
solvability, their interpolative properties and the preservation
of the indistinguishability that may be inherent in the input
fuzzy sets. Moreover, we show that under certain conditions the
equivalence of First Infer Then Aggregate and First Aggregate
Then Infer (FITA and FATI) inference strategies can be shown for
the Bandler-Kohout subproduct (BK-Subproduct), much like in
the case of CRI. Finally, by way of addressing the computational
complexity that may exist in the Bandler-Kohout subproduct we
suggest a hierarchical inferencing scheme. Thus this work shows
that the BK-subproduct based FRI is as effective and efficient as
the CRI itself.

Keywords—Fuzzy relational inference systems, Compositional
rule of inference, Bandler-Kohout subproduct, fuzzy relational
equations, correctness and continuity of inference, hierarchical
CRI.

I. INTRODUCTION

The idea of linguistic fuzzy models imitating the human way
of thinking was proposed by L. A. Zadeh in his pioneering
work ZADEH [1]. Systems using fuzzy rules and an inference
mechanism have been applied in a wide variety of applications,
viz., automatic control, decision making, risk analysis, etc.

Let X be a non-empty classical set. Let us recall that a
fuzzy set A on X is a mapping from X to the unit interval,
i.e., A : X → [0, 1]. Let us denote the set of all fuzzy sets
on X by F(X). Given two non-empty classical sets X,Y , a
fuzzy IF-THEN rule is usually given in the following form:

IF x is A THEN y is B , (1)

where the antecedent fuzzy set A ∈ F(X) and the consequent
fuzzy set B ∈ F(Y ) represent some properties.

Given a fuzzy observation x is A′ with A′ ∈ F(X), a
corresponding output fuzzy set B′ ∈ F(Y ), meaning y is B′,
is deduced using an inference mechanism. Thus, an inference
mechanism may be generally viewed as an arbitrary mapping
from F(X) to F(Y ) [2], [3].

Many types of inference mechanisms dealing with fuzzy
rule based systems have been proposed in the literature and
used in practical applications. Of the many fuzzy inference
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schemes, fuzzy relational inferences have obtained consider-
able attention both from theoretical researchers and practi-
tioners. Similarity Based Reasoning (SBR) [4] and Inverse
Truth-functional Modification [5] are two of the representative
examples of inference mechanisms that do not use fuzzy
relations and which are also well established in the literature.
However, it should be mentioned that, under certain conditions,
an equivalent fuzzy relation based description of some of these
inference mechanisms can be given, see [6], [7].

In this work, we will focus only on fuzzy relation based
inference mechanism.

A. Fuzzy Relational Inferences

Fuzzy relational inference mechanisms use a fuzzy relation
R to model a given fuzzy rule base. Here, a fuzzy IF-THEN
rule of the form (1) is represented as a fuzzy relation R : X×
Y → [0, 1], i.e., R ∈ F(X × Y ). Then, given a fact x is A′,
the inferred output y is B′ is obtained as a composition of A′
and R, i.e.,

B′ = A′@R , (2)

where A′ ∈ F(X), B′ ∈ F(Y ) and @ is a fuzzy relational
composition1 involving fuzzy logic operations.

Up to now, we discussed only the case of a single fuzzy rule.
However, rarely, if ever a single fuzzy rule can be expected to
capture the entire knowledge in which the scheme is employed
and hence a fuzzy rule base consisting of multiple fuzzy rules
is a necessity. Let us consider a fuzzy rule base:

IF x is Ai THEN y is Bi , (3)

where the fuzzy sets Ai ∈ F(X) and Bi ∈ F(Y ), represent
some properties, for i = 1, . . . , n.

Clearly, for different representations R of the fuzzy if-then
rules in (1) and different compositions @ we obtain different
fuzzy relational inference mechanisms, often with varying
properties and applicable in specific contexts. We present
below two of the most commonly employed fuzzy relations
R to model a given fuzzy rule base and two of the established
fuzzy relational inference mechanisms based on different fuzzy
compositions.

1In literature, we may very often meet a distinction between fuzzy relational
composition and image of a fuzzy set under a fuzzy relation. The first notion
denotes a composition of two binary relations while the second one denotes our
situation when we compose a fuzzy set and a binary fuzzy relation. However,
a unary fuzzy relation (i.e. a fuzzy set) on a universe U may be viewed as a
binary fuzzy relation on a Cartesian product of an empty set and U. Therefore,
we may use the notion composition even in our situation and avoid the use
of two notions.
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B. Distinct Fuzzy Rule Base Models
(i) The fuzzy relation Ř ∈ F(X × Y )

Ř(x, y) =

n∨
i=1

(Ai(x) ∗Bi(y)) , x ∈ X, y ∈ Y (4)

is the most often used model of fuzzy rules (3) in real
world applications. This is mainly due to the successful
applications of this, say Cartesian product approach,
published by MAMDANI and ASSILIAN in [8], which
was followed by a huge number of researchers and
practitioners, see e.g. [9], [10].

(ii) Alternatively, to keep the conditional IF-THEN form of
fuzzy rules (3), fuzzy relation R̂ ∈ F(X ×Y ) given as
follows

R̂(x, y) =

n∧
i=1

(Ai(x)→ Bi(y)) , x ∈ X, y ∈ Y (5)

can be chosen to model the fuzzy rule base. It deals
with a mathematically correct extension of a classical
implication denoted by →.

To stress the difference between both the approaches, let
us recall the work of DUBOIS et al. [11], where the authors
state: ”In the view given by (5), each piece of information
(fuzzy rule) is viewed as a constraint. This view naturally
leads to a conjunctive way of merging the individual pieces of
information since the more information, the more constraints
and the less possible values to satisfy them.” While the same
authors describe the second approach proposed by Mamdani
and Assilian as follows: ”It seems that fuzzy rules modelled by
Ř are not viewed as constraints but are considered as pieces
of data. Then the maximum in (4) expresses accumulation of
data”.

It should be stressed that both approaches have sound logical
foundations but from different viewpoints, see e.g. [12], [13],
[14]. However, only the approach using Ř was widely used
in applications although the implicational approach using R̂
is probably as useful as the Mamdani-Assilian one, see [15].
Nevertheless, as we show in this work, the implicational
approach using R̂ does have an important role to play in the
case of BK-Subproducts (see Theorem 3.22). For an extensive
study of different fuzzy rules we refer to [16], [17], [18].

C. Coherence
Consistency (non-existence of contradictory rules) is a cru-

cial issue to be checked when dealing with a fuzzy rule base.
In case of the implicational approach (5) to modelling a fuzzy
rule base, the situation gets significantly simpler. It has been
noted by DUBOIS et al. [11] that inconsistent rules lower the
largest membership degrees in the resulting fuzzy relation.
Departing from this fact, they proposed the concept of so-
called coherence for which an existence of y ∈ Y such that
R̂(x′, y) = 1 for arbitrary x′ ∈ X is required. This condition
is easy to check as well as to ensure, see [11], [19].

An analogous issue in case of the Cartesian product ap-
proach Ř has been suggested [20]. However, the condition

has to be redefined and instead of non-emptiness of the core
of Ř, its convexity up to some predefined value is required.
This approach is unquestionably more complicated and less
preferable.

Generally, the consistency (coherence) is a property of the
given fuzzy rule base (its model), not the inference mechanism
itself. However, as mentioned above and demonstrated in
Section IV, each model of a fuzzy rule base is computationally
preferable in a combination with a different inference and so,
these notions cannot be studied independently.

D. Compositional Rule of Inference and BK-Subproduct Infer-
ence Mechanisms

As noted above, depending on the type of composition @
the fuzzy relational inference varies in its properties. Two of
the commonly employed fuzzy relational compositions are the
sup−∗ and inf −I compositions (see KLIR and YUAN [21]),
which when employed lead to the following fuzzy relational
inferences.

(i) The Compositional Rule of Inference (CRI) ZADEH [1]
is one of the earliest fuzzy relational inferences. Here,
a fuzzy IF-THEN rule of the form (1) is represented
as a fuzzy relation R(x, y) : X × Y → [0, 1], i.e.,
R ∈ F(X × Y ). Then, given a fact x is A′, the
inferred output B′ is obtained as composition of A′(x)
and R(x, y), i.e.,

B′(y) =
∨
x∈X

(A′(x) ∗R(x, y)) , y ∈ Y (6)

where ∗ is a fuzzy conjunction, typically a t-norm (see
KLEMENT et al. [22] for more details). We use the
following notation to indicate the CRI scheme:

B′ = A′ ◦R . (7)

(ii) Other than the CRI, let us also recall that it was
PEDRYCZ [23] who firstly proposed an inference
scheme based on the Bandler-Kohout subproduct (BK-
Subproduct, for short) proposed by BANDLER and
KOHOUT [24], [25], [26].
For a given fuzzy input A′ ∈ F(X), the fuzzy output
B′ ∈ F(Y ) obtained by the BK-Subproduct inference
mechanism is defined as follows:

B′(y) =
∧
x∈X

(A′(x)→ R(x, y)) , y ∈ Y (8)

where → is a residual implication (see Sec. II for more
details) and R is the fuzzy relation that the models fuzzy
rule (1). We use the following notation to indicate the
BK-Subproduct scheme:

B′ = A′ CR . (9)

We only remark that yet other types of fuzzy relational
compositions are studied in literature, for instance, the inf −S
composition where S is a t-conorm (see KLIR and YUAN [21]).
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E. A Mathematical Structure for Fuzzy Relational Inference
Mechanisms

Based on the above discussion, fuzzy rules may be viewed as
a partial mapping from F(X) to F(Y ) assigning Bi ∈ F(Y )
to Ai ∈ F(X) for every i = 1, . . . , n. Then the inference
process itself can be viewed as an extension of this partial
mapping to a total one [27]. For better understanding, let
us adopt the notation from [28] and consider the following
structure

S = (X,Y, {Ai, Bi}i=1,...,n,L,@) ,

where X,Y are non-empty classical sets, Ai ∈ F(X), Bi ∈
F(Y ) for all i = 1, . . . , n are the antecedent and consequent
fuzzy sets in the fuzzy rule base, @ : F(X)× F(X × Y ) →
F(Y ) is a fuzzy relational composition. For instance, @ could
be one of ◦ or C. Finally, L is an algebra on the unit interval
[0, 1] that provides us with the operations to be employed in
the inference process, typically a complete residuated lattice
(see Section II-A for more details).

Now, by the choice of the fuzzy relation R modeling the
fuzzy rule base and by the choice of @, we define a fuzzy
function f@

R (A) : F(X) → F(Y ) such that f@
R (A) = A@R,

for an arbitrary A ∈ F(X).

F. Studies on the Advantages of CRI and Organization of the
Work

Given a fuzzy rule base, the CRI is the most often and
widely used fuzzy relational inference for the following rea-
sons:

(i) An important issue in the applicability of a fuzzy
relational inference mechanism @ in a structure S =
(X,Y, {Ai, Bi}i=1,...,n,L,@) is to determine an ap-
propriate fuzzy relation R modelling the given fuzzy
rules so as to obtain meaningful conclusions. One of
the fundamental properties expected of the correspond-
ing fuzzy adjoint mapping is its interpolativity, i.e.,
f@
R (Ai) = Bi. This pertains to the solvability of fuzzy

relation equations. In the case of CRI, necessary and
sufficient conditions for the solvability of fuzzy relation
equations has been well established for long, see e.g.
[29]. The state-of-the-art, as well as analogous results,
concerning the BK-Subproduct are briefly recalled in
Subsection III-A.

(ii) In PERFILIEVA et al. [28], [30] the authors have
dealt with the continuity of a fuzzy function f◦R ad-
joint to the CRI mechanism ◦ in a structure S =
(X,Y, {Ai, Bi}i=1,...,n,L, ◦) and a fuzzy relation R
modelling fuzzy rules (3). The authors give necessary
and sufficient conditions for f◦R to be continuous. They
have also shown that the concept of continuity is
equivalent to the interpolativity of the function f◦R. We
follow their ideas in Subsection III-B.

(iii) KLAWONN and CASTRO [31] have proven two im-
portant and interesting results about the CRI scheme
and the indistinguishability inherent to the fuzzy sets
considered. Firstly, the authors show that the indis-
tinguishability induced by the antecedent fuzzy set of

the rule cannot be overcome. Secondly, they have also
demonstrated the robustness of fuzzy inference systems
employing the CRI mechanism in scenarios where there
can be slight discrepancies between the intended input
A′ and the actual input Â′, i.e., f◦R(A′) = f◦R(Â′).
However, this study was done in the case of a single
fuzzy rule as in (1). We consider multiple fuzzy rules
(3), and prove that in such case this property holds when
R = Ř. Then we continue with an investigation of
this property for the BK-Subproduct. Subsection III-C
is devoted to this issue.

(iv) In the case of CRI, if the input is a fuzzy singleton, then
the output determined by the fuzzy adjoint function f◦R
depends only on the relation R modelling the given
fuzzy rule base, i.e., the inference plays a role only
in case of a non-singleton fuzzy input. A detailed
exposition of this topic is done in Subsection IV-A.

(v) While employing fuzzy relational inferences in a system
consisting of multiple fuzzy rules, there are two infer-
ence strategies that are usually employed, viz., FATI
and FITA. In the case of CRI mechanism, if the fuzzy
rules are represented by the fuzzy relation Ř, then
the FATI inference strategy is equivalent to the FITA
inference strategy. However, this is no more true if we
employ R̂ instead of Ř. More details on FATI and FITA
strategies and their subsequent exploration is done in
Section IV-B.

(vi) Finally, it should be noted that fuzzy relational infer-
ences, in general, are not without their drawbacks due
to space and time complexities. Many works have con-
centrated on increasing the efficiency of the inference
process. However, all these have so far been done only
for the case of CRI mechanism and especially when the
fuzzy rules are represented by the fuzzy relation Ř. The
above properties will be dealt with in a more detailed
way in Subsections IV-C and IV-D.

G. Motivation for this work: Study of the Bandler-Kohout
Subproduct and the relation R̂

From the previous subsection, it is clear that most of the
works have tended to concentrate predominantly on the CRI
mechanism. However, two facts emerge from it.

On the one hand, the above studies done on CRI can also
be conducted for other fuzzy relational inference mechanisms
and in this work we intend to do a similar investigation into
the Bandler-Kohout Subproduct. On the other hand, note also
that some of the advantages available with the CRI mechanism
depend to a large extent on the fuzzy rules being modelled by
the fuzzy relation Ř, which as already noted is appropriate only
in the context where the fuzzy rules are viewed as ’positive’
pieces of information [11], [17]. However, there are situations
when the context dictates to view the fuzzy rules in the
conditional nature and the fuzzy relation R̂ has to be used to
model them [15]. Then many of the advantages of the CRI are
no more available, viz., the robustness of the CRI mechanism
with respect to the indistinguishability of input fuzzy sets in the
case of multiple fuzzy rules, the equivalence of FATI and FATI,
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the many techniques dealing with enhancing the efficiency of
the inference procedures.

In this work, we intend to carry on the following investiga-
tion. Firstly, this work shows that all the properties investigated
/ touted as an advantage of the CRI mechanism is available
also for the BK-subproduct and, often, under similar conditions
or generality as available on CRI. Secondly, we also highlight
that the conditional form of representation of a fuzzy rule base,
in conjunction with the BK-subproduct, i.e., f/

R̂
is a strong

alternative to f◦
Ř

in the appropriate contexts.

II. MATHEMATICAL BACKGROUND OF FUZZY INFERENCE
MECHANISMS

A. Fuzzy Inference Mechanisms
Fuzzy relational inference mechanisms are mathematically

based on a complete residuated lattice (see, e.g., [12]) which
we fix for the whole paper as the basic algebraic structure. Let
us only briefly recall, that an algebra L = (L,∧,∨, ∗,→, 0, 1)
is a residuated lattice if
• (L,∧,∨, 0, 1) is a lattice with the least and the greatest

element
• L = (L, ∗, 0, 1) is a commutative monoid such that ∗ is

isotone in both arguments
• the operation → is a residuation with respect to ∗, i.e.

a ∗ b ≤ c iff a→ c ≥ b . (10)

The following properties [12] are immediately available to us
for any a, b, c ∈ L:

a = 1→ a , (11)
a→ c ≥ b→ c whenever a ≤ b , (12)
a→ b ≤ a→ c whenever b ≤ c , (13)

a→ (b→ c) = (a ∗ b)→ c = (b ∗ a)→ c , (14)
(a→ b)→ b ≥ a ∨ b , (15)

a→
∧
i∈I

bi =
∧
i∈I

(a→ bi) , (16)∨
i∈I

(ai → b) ≤
∧
i∈I

ai → b , (17)∨
i∈I

ai → b =
∧
i∈I

(ai → b) , (18)

(a→ b) ∗ c ≤ a→ (b ∗ c) . (19)

Let us fix the set L = [0, 1] for the whole paper. Then ∗
becomes a left-continuous t-norm and → becomes a residual
fuzzy implication derived from ∗. For more details on these
operations we refer to [22], [12], [32].

In L, we can derive yet another operation known as the
biresiduum and defined as follows:

a↔ b = (a→ b) ∧ (b→ a) , a, b ∈ L. (20)

The following properties of the biresiduum will be useful in
the sequel (see [12]):

(a↔ b) ∗ (b↔ c) ≤ a↔ c , (21)
(a↔ b) ∧ (c↔ d) ≤ (a ∧ c)↔ (b ∧ d) . (22)

Finally, by an extension of an algebraic operation from L
to operations between fuzzy sets we mean the following:

(C ? D)(u, v) = C(u) ? D(v) , u ∈ U, v ∈ V , (23)

where ? ∈ {∧,∨, ∗,→,↔} and for arbitrary fuzzy sets C,D
on arbitrary universes U, V , respectively.

B. Inference Strategies
Now, there are two inference strategies called FITA and

FATI, see GOTTWALD [33].
In First Infer Then Aggregate (FITA) strategy, we firstly

construct individual fuzzy relations Ri ∈ F(X × Y ) from
each of the n fuzzy rules. Then, the given fuzzy observation
A′ ∈ F(X) is composed with each of these relations Ri by a
chosen inference @ and the obtained individual output fuzzy
sets B′i = A′@Ri ∈ F(Y ) are then aggregated to form the
final output fuzzy set B′ ∈ F(Y ).

In First Aggregate Then Infer (FATI) strategy, the individual
fuzzy relations Ri ∈ F(X×Y ) from each of the n fuzzy rules
is aggregated into a single fuzzy relation R ∈ F(X × Y ) and
this is composed with the given fuzzy observation A′ ∈ F(X)
to obtain the fuzzy output B′ = A′@R ∈ F(Y ).

III. DESIRABLE PROPERTIES OF INFERENCE
MECHANISMS

A. Interpolativity of Fuzzy Inference Systems - Property (i)
The interpolativity f@

R (Ai) = Bi is a fundamental property
of any inference mechanism. In this case, we say that R is a
correct model of given fuzzy rules in the given structure S.
This leads us to deal with a system of fuzzy relation equations
[34] where

Ai@R = Bi , i = 1, . . . , n , (24)

is solved with respect to the known Ai ∈ F(X), Bi ∈ F(Y )
and unknown R ∈ F(X × Y ). If R is a solution to (24) then
the adjoint fuzzy function fulfills f@

R (Ai) = Bi.
In the case of CRI, the above system of equations, reduces

to the following:

Ai ◦R = Bi , i = 1, . . . , n . (25)

Let us recall some main results which may be found, e.g., in
[29], [34], [35], [36].

Theorem 3.1: System (25) is solvable if and only if R̂ is a
solution of the system and moreover, R̂ is the greatest solution
of (25).

On the one hand, Theorem 3.1 states the necessary and
sufficient condition of the solvability of system (25) and it
determines the solution. Moreover, it ensures that the given
solution is the greatest one. On the other hand, we still do
not know, when R̂ is the solution, i.e., how to ensure the
solvability.

Theorem 3.2 ([36]): Let Ai for i = 1, . . . , n be normal2.
Then Ř is a solution of (25) if and only if the following

2Let us recall that a fuzzy set A on a universe U is called normal if there
exists an x ∈ U such that A(x) = 1.
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condition holds for arbitrary i, j ∈ {1, . . . , n}:∨
x∈X

(Ai(x) ∗Aj(x)) ≤
∧
y∈Y

(Bi(y)↔ Bj(y)) . (26)

Theorem 3.2 specifies a sufficient condition under which the
system is solvable and moreover, it ensures that not only R̂
but also even Ř is a solution of system (25).

It is worth mentioning that condition (26) appearing in
Theorem 3.2 is not very convenient in practice. Another
sufficient condition for solvability of the systems with a high
practical importance was published in [39], [40].

Theorem 3.3: Let Ai for i = 1, . . . , n be normal and fulfill
the Ruspini condition

n∑
i=1

Ai(x) = 1 , x ∈ X. (27)

Then the system (25) is solvable.
Remark 3.4: Besides the case when antecedent fuzzy sets

form a fuzzy partition fulfilling the Ruspini condition, the so
called ∗-semi-partition [37] also plays an important role.

Let us recall what is the state-of-the-art concerning the
BK-Subproduct and the interpolativity issue. In the case of
BK-Subproduct, the system of equations (24), reduces to the
following:

Ai CR = Bi , i = 1, . . . , n . (28)

Concerning system (28), let us recall the following two basic
theorems from PEDRYCZ [23] and NOSKOVA [38]:

Theorem 3.5 ([23]): System (28) is solvable if and only if
Ř is a solution of the system and moreover, Ř is the least
solution of system (28).

Theorem 3.6 ([38], Theorem 2): Let Ai for i = 1, . . . , n be
normal. Then R̂ is a solution of (28) if and only if the condition
(26) holds for arbitrary i, j ∈ {1, . . . , n}.

Again, condition (26) to which Theorem 3.6 refers to, is
on one hand very transparent but not very convenient from
a practical point of view. Fortunately, the sufficient condition
for solvability of the system, with a high practical importance,
stated in Theorem 3.3 is valid even for system (28) (see
ŠTĚPNIČKA et al. [39], [40]).

Theorem 3.7: Let Ai for i = 1, . . . , n be normal and fulfill
the Ruspini condition (27). Then the system (28) is solvable.

We may easily observe, that each of the important results
well known for the interpolativity issue in case of CRI has
its analogy even for the BK-Subproduct case under exactly
the same conditions and therefore, both inferences are equally
appropriate from this point of view.

In fact, the availability of such results for the BK-
Subproduct was also one of the motivations to conduct this
study of the BK-Subproduct inference vı́s-á-vı́s the already
known advantageous properties of CRI.

B. Continuity of Fuzzy Inference Systems - Property (ii)
In [28], [30] the authors have dealt with the continuity of

a fuzzy function f◦R adjoint to the CRI mechanism and a
fuzzy relation modelling fuzzy rules (3). They have defined

continuity suitably and have shown that it is equivalent to the
correctness of the model under consideration.

Although the original definition in [28] of a continuous
model was given for the particular inference mechanism CRI,
i.e., for @ ≡ ◦, the particular composition plays absolutely no
role in the proof of the result (see Theorem 3.11 below) ex-
plaining the nature of the definition. Hence can be generalized
for an arbitrary fuzzy relational composition.

Definition 3.8: A fuzzy relation R ∈ F(X × Y ) is said
to be a continuous model of fuzzy rules (3) in a structure
S = (X,Y, {Ai, Bi}i=1,...,n,L,@) if for each i ∈ I and for
each A ∈ F(X) the following inequality holds:∧

y∈Y
(Bi(y)↔ (A@R)(y)) ≥

∧
x∈X

(Ai(x)↔ A(x)) . (29)

Remark 3.9: Inequality (29) can be rewritten in terms of
the adjoint fuzzy function f@

R as follows:∧
y∈Y

(Bi(y)↔ (f@
R (A))(y)) ≥

∧
x∈X

(Ai(x)↔ A(x)) . (30)

To be precise, the continuity concerns the fuzzy function f@
R ,

i.e., the model of fuzzy rules R as well as the inference
mechanism @. Therefore, we could more adequately talk
about continuity of the whole fuzzy inference systems than
just about continuity of R. Nevertheless, since Definition 3.8
fixes a structure in which the continuity is introduced, it is
mathematically correct and we adopt the original terminology
from [28].

Remark 3.10: Let us explain why formula (29) expresses
the continuity. The closeness between fuzzy sets is measured
by the biresiduation operation ↔, i.e., it is a dual concept to
the metric one. Let us consider a continuous Archimedean t-
norm ∗ with an additive generator g : [0, 1]→ [0,+∞]. Then
the biresiduum may be written in the form

a↔ b = g−1(|g(a)− g(b)|) , (31)

where g−1 : [0,∞]→ [0, 1] is the inverse function and where
in the case of g(0) =∞ we define g(0)− g(0) = 0. Now, for
an arbitrary non-empty universe X it is possible to define a
metric Dg on F(X) generated by g as follows:

Dg(A,B) =
∨
x∈X
|g(A(x))− g(B(x))| . (32)

The following theorem justifies the use of the notion of
continuity in Definition 3.8.

Theorem 3.11: Let S = (X,Y, {Ai, Bi}i=1,...,n,L,@) be
a structure for fuzzy rules (3) such that L be a residuated
lattice on [0, 1] with a continuous Archimedean t-norm ∗
having a continuous additive generator g. A fuzzy relation
R ∈ F(X × Y ) is a continuous model of the fuzzy rules
in the given structure S if and only if

Dg(Bi, (A@R)) ≤ Dg(Ai, A) , i = 1, . . . , n (33)

for each fuzzy set A ∈ F(X).
Proof: The proof for @ ≡ ◦ may be found in [28]. Its

generalization is straightforward.
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The main result in PERFILIEVA et al. [28], [30] concerns
the relationship of the above mentioned continuity and the
interpolativity for the CRI as contained in the following result.

Theorem 3.12 ([28], Theorem 2): Let
S = (X,Y, {Ai, Bi}i=1,...,n,L, ◦) be a structure for
fuzzy rules (3). A fuzzy relation R ∈ F(X × Y ) is a correct
model of fuzzy rules (3) in the given structure S if and only
if it is a continuous model of these rules in S.

In the following, we show that an identical result is valid
even for the case of the BK-Subproduct. Let us start by proving
the following lemma which is crucial for further results.

Lemma 3.13: Let S = (X,Y, {Ai, Bi}i=1,...,n,L,C) be
a structure for fuzzy rules (3) and let R ∈ F(X × Y ). Then
for any A ∈ F(X) and all i = 1, . . . , n and y ∈ Y it is true
that

Bi(y)↔ (ACR)(y) ≥ δR,i(y)∗
∧
x∈X

(Ai(x)↔ A(x)) , (34)

where δR,i(y) = Bi(y)↔ (Ai CR)(y).
Proof: By the transitivity property (21) of↔ with respect

to ∗, we get

Bi(y)↔ (ACR)(y)

≥ (Bi(y)↔ (Ai CR)(y)) ∗ ((Ai CR)(y)↔ (ACR)(y))

where i ∈ {1, . . . , n}.
The first multiplicand Bi(y) ↔ (Ai C R)(y) is equal to

δR,i(y), while the second multiplicand, for an arbitrary y ∈ Y ,
has the following lower bound:

(ACR)(y)↔ (Ai CR)(y)

=
∧
x∈X

(A(x)→ R(x, y))↔
∧
x∈X

(Ai(x)→ R(x, y))

≥
∧
x∈X

(
(A(x)→ R(x, y))↔ (Ai(x)→ R(x, y))

)
dBy (22)

=
∧
x∈X

((
[A(x)→ R(x, y)]→ [Ai(x)→ R(x, y)]

)
∧
(
[Ai(x)→ R(x, y)]→ [A(x)→ R(x, y)]

))
=
∧
x∈X

((
[Ai(x) ∗ (A(x)→ R(x, y))]→ R(x, y)

)
∧
(
[A(x) ∗ (Ai(x)→ R(x, y))]→ R(x, y)

))
dBy (14)

=
∧
x∈X

((
Ai(x)→ [(A(x)→ R(x, y))→ R(x, y)]

)
∧
(
A(x)→ [(Ai(x)→ R(x, y))→ R(x, y)]

))
dBy (14)

≥
∧
x∈X

(
[Ai(x)→ A(x)] ∧ [A(x)→ Ai(x)]

)
dBy (15)

=
∧
x∈X

(
Ai(x)↔ A(x)

)
.

Now (34) follows immediately from the monotonicity of ∗.
Due to Lemma 3.13, we may prove the following theorem to

which is analogous to Theorem 3.12. It again shows that the

BK subproduct as an inference mechanism carries the same
property as the CRI.

Theorem 3.14: Let S = (X,Y, {Ai, Bi}i=1,...,n,L,C) be a
structure for fuzzy rules (3). A fuzzy relation R ∈ F(X × Y )
is a correct model of fuzzy rules (3) in the given structure S
if and only if it is a continuous model of these rules in S.

Proof: Suppose that R is a correct model of the fuzzy
rules (3) in the given structure. Then R solves the given system
of fuzzy relation equations Ai C R = Bi for all i = 1, . . . , n
and therefore δR,i(y) = 1 for all i = 1, . . . , n and for all
y ∈ Y . By (34), R is a continuous model.

Conversely, let R be a continuous model of (3) in the given
structure. Then∧

y∈Y
(Bi(y)↔ (ACR)(y)) ≥

∧
x∈X

(Ai(x)↔ A(x)) (35)

holds for each i = 1, . . . , n and for arbitrary A ∈ F(X).
Substituting A ≡ Ai in (35), we obtain∧

y∈Y
(Bi(y)↔ (Ai CR)(y)) ≥ 1 ,

which implies that Ai CR ≡ Bi.
As in the case of interpolativity, the continuity property is

present in both the types of inferences under exactly the same
conditions.

C. Robustness of Fuzzy Inference Systems - Property (iii)
Let X be a classical set and let ∼ be an equivalence relation

defined on X , i.e., ∼ is reflexive, symmetric and transitive.
Immediately, ∼ partitions X into equivalence classes. It is
well-known then that an M ⊆ X belongs to this partition if,
and only if, whenever x ∈M and x ∼ y for some y ∈ X then
y ∈ M . In a sense, the elements of M are indistinguishable
and can be represented mathematically as follows:

x ∈M and x ∼ y implies y ∈M .

A similar relation between fuzzy equivalence relations and
fuzzy sets on X was introduced by KLAWONN and CASTRO
[31]. The operation ∗ comes from the residuated lattice L.

Definition 3.15: A fuzzy subset E of the Cartesian product
X2 is called a fuzzy equivalence relation on X if the following
properties are satisfied for all x, y, z ∈ X:

(Reflexivity) E(x, x) = 1 , (ER)
(Symmetry) E(x, y) = E(y, x) , (ES)

(Transitivity) E(x, z) ≥ E(x, y) ∗ E(y, z) . (ET)

Definition 3.16: A fuzzy set µ ∈ F(X) is called extensional
with respect to a fuzzy equivalence relation E on X if

µ(x) ∗ E(x, y) ≤ µ(y) , x, y ∈ X . (36)

If a fuzzy set µ is not extensional with respect to the
considered fuzzy equivalence relation E, instead one considers
the smallest fuzzy set that is extensional with respect to E and
contains µ.
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Definition 3.17: Let µ ∈ F(X) and let E be a fuzzy
equivalence relation on X . The fuzzy set

µ̂(x) =
∧
{ν | µ ≤ ν and ν is extensional with respect to E}

is called the extensional hull of µ. Note that by µ ≤ ν we
mean that for all x ∈ X , µ(x) ≤ ν(x), i.e., we mean ordering
in the sense of inclusion, not in the sense of ordering fuzzy
quantities.

Proposition 3.18 ([31], Proposition 2.9): Let µ ∈ F(X)
and let E be a fuzzy equivalence relation on X . Then

(i) µ̂(x) =
∨
{µ(y) ∗ E(x, y) | y ∈ X} ,

(ii) µ̂ is extensional with respect to E ,
(iii) ̂̂µ = µ̂ .

The following two important and interesting results about
the CRI scheme and the indistinguishability inherent to the
fuzzy sets considered are proved in [31].

Theorem 3.19 ([31], Theorem 4.4): Let
S = (X,Y, {A,B},L, ◦) be a structure for a single
fuzzy IF-THEN rule as given in (1). Let E be a fuzzy
equivalence relation on X with respect to which A is
extensional. Let A′ ∈ F(X) be any fuzzy set, then

A′ ◦ R̂ = Â′ ◦ R̂,
A′ ◦ Ř = Â′ ◦ Ř.

The following interpretation of the above result is given in
[31]: The output obtained from CRI for a given fuzzy rule
and an input fuzzy set A′ does not change if we substitute
A′ by its extensional hull Â′. The indistinguishability inherent
in the fuzzy set A cannot be avoided even if the input fuzzy
set A′ stands for a crisp value. Further, a fuzzified input does
not change the outcome of a rule as long as the fuzzy set
obtained by the fuzzification is contained in the extensional
hull of the original crisp input value. They finally conclude
that it does not make sense to measure more exactly than the
indistinguishability admits.

In other words, this shows the robustness of the inference
in scenarios where there can be slight discrepancies between
the intended input and the actual input.

It is immediate now, as already observed in [31], that the
indistinguishability induced by the fuzzy set representing the
linguistic expression in the premise of the rule cannot be
overcome.

Even though Theorem 3.19 is proven in [31] for a single
fuzzy rule, it can be shown that the result is valid even with
n fuzzy rules.

Theorem 3.20: Let S = (X,Y, {Ai, Bi}i=1,...,n,L, ◦) be a
structure for fuzzy rules (3). Let E be a fuzzy equivalence
relation on X with respect to which Ai is extensional for
arbitrary i = 1, . . . , n. Let A′ ∈ F(X) be any fuzzy set, then
A′ ◦ Ř = Â′ ◦ Ř.

Proof: The inequality Â′ ◦R ≥ A′ ◦R holds for arbitrary
fuzzy relation R ∈ F(X × Y ).

Thus it suffices to prove the other inequality for Ř, i.e.,
Â′ ◦ Ř ≤ A′ ◦ Ř. Since Ai is extensional with respect to E
for arbitrary i, Ai(x

′) ≥ Ai(x) ∗ E(x, x′) for any x, x′ ∈ X .

For any x ∈ X , we have

Â′(x) ∗
n∨

i=1

(Ai(x) ∗Bi(y))

=
∨

x′∈X

(
A′(x′) ∗ E(x, x′)

)
∗

n∨
i=1

(
A(x) ∗B(y)

)
=
∨

x′∈X

([
A′(x′) ∗ E(x, x′)

]
∗

n∨
i=1

(
Ai(x) ∗Bi(y)

))
=

n∨
i=1

∨
x′∈X

([
A′(x′) ∗ E(x, x′)

]
∗
(
Ai(x) ∗Bi(y)

))

=

n∨
i=1

∨
x′∈X

(
A′(x′) ∗

[
E(x, x′) ∗Ai(x)

]
∗Bi(y)

)
≤

n∨
i=1

∨
x′∈X

(
A′(x′) ∗

(
Ai(x

′) ∗Bi(y)
))

,

which implies

(Â′ ◦ Ř)(y) ≤ (A′ ◦ Ř)(y) , y ∈ Y .

It should be emphasized that only the Mamdani-Assilian
(Cartesian product) approach Ř generally works in the com-
bination with the CRI. We now show the robustness of the
BK-Subproduct inference mechanism along similar lines as
KLAWONN and CASTRO [31]. Once again the employed
operations come from the residuated lattice L. Firstly note
that if a fuzzy set µ ∈ F(X) is extensional with respect to a
fuzzy equivalence relation E on X then

E(x, y)→ µ(y) ≥ µ(x) , x, y ∈ X . (37)

Proposition 3.21: Let µ ∈ F(X) and E a fuzzy equiva-
lence relation on X . Then

µ̂(x) =
∧
{E(x, y)→ µ(y) | y ∈ X} . (38)

Proof: Let µ̃(y) =
∧
{E(z, y)→ µ(z) | z ∈ X}. We only

need to show that µ̃ = µ̂. Note, firstly, that for any x ∈ X we
have

µ̃(x) =
∧
{E(z, x)→ µ(z) | z ∈ X} ≤ E(x, x)→ µ(x)

= 1→ µ(x) = µ(x) ≤ µ̂(x) .

Let ν ∈ F(X) be extensional with respect to E such that
ν ≥ µ, which implies, by definition, that µ̂ ≤ ν. Then for any
x ∈ X we have

ν(x) ≤ E(z, x)→ ν(z) and ν(x) ≤ E(z, x)→ µ(z) ,

for every z ∈ X and therefore

ν(x) ≤
∧
{E(z, x)→ µ(z) | z ∈ X} = µ̃(x) ,

i.e., µ̃(x) ≥ µ̂(x) and hence µ̃(x) = µ̂(x).
Now, we present a result analogous to the one given in

Theorem 3.19.
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Theorem 3.22: Let S = (X,Y, {A,B},L,C) be a structure
for fuzzy rule (1). Let E be a fuzzy equivalence relation on
X with respect to which A is extensional. Let A′ ∈ F(X) be
any fuzzy set, then

A′ C R̂ = Â′ C R̂, A′ C Ř = Â′ C Ř.

Proof: Let R ∈ F(X × Y ) be any fuzzy relation. By the
definition of Â′ we have the following inequalities:

Â′ ≥ A′ =⇒ Â′ → R ≤ A′ → R dBy (12)

=⇒ Â′ CR ≤ A′ CR .

Thus it suffices to prove the other inequality, i.e., Â′ C R ≥
A′ CR.

Let R = R̂, i.e., R(x, y) = A(x) → B(y) for any x ∈
X, y ∈ Y . Then, by definition, we have

(Â′ C R̂)(y) =
∧
x∈X

(Â′(x)→ (A(x)→ B(y))), y ∈ Y .

Since A is extensional with respect to E, A(x′) ≥ A(x) ∗
E(x, x′) for any x, x′ ∈ X and by (12)

A(x′)→ B(y) ≤ (A(x) ∗ E(x, x′))→ B(y), y ∈ Y. (39)

For any x ∈ X , we have

Â′(x)→ (A(x)→ B(y))

=
∨

x′∈X

(
A′(x′) ∗ E(x, x′)

)
→
(
A(x)→ B(y)

)
=
∧

x′∈X

([
A′(x′) ∗ E(x, x′)

]
→
(
A(x)→ B(y)

))
dBy (18)

=
∧

x′∈X

(
A′(x′)→

[
E(x, x′)→ (A(x)→ B(y))

])
dBy (14)

=
∧

x′∈X

(
A′(x′)→

((
E(x, x′) ∗A(x)

)
→ B(y)

) )
dBy (14)

≥
∧

x′∈X

(
A′(x′)→

(
A(x′)→ B(y)

))
dBy (39)

which implies

(Â′ C R̂)(y)

=
∧
x∈X

(Â′(x)→ (A(x)→ B(y)))

≥
∧

x′∈X

(
A′(x′)→

(
A(x′)→ B(y)

))
= (A′ C R̂)(y) ,

for any y ∈ Y .
Let R = Ř, i.e., R(x, y) = A(x)∗B(y) for any x ∈ X, y ∈

Y . Then, by definition, we have

(Â′ C Ř)(y) =
∧
x∈X

(Â′(x)→ (A(x) ∗B(y))) , y ∈ Y .

For any x ∈ X , we have

Â′(x)→ (A(x) ∗B(y))

=
∨

x′∈X

(
A′(x′) ∗ E(x, x′)

)
→
(
A(x) ∗B(y)

)
=
∧

x′∈X

((
A′(x′) ∗ E(x, x′)

)
→
(
A(x) ∗B(y)

))
dBy (18)

=
∧

x′∈X

(
A′(x′)→

[
E(x, x′)→ (A(x) ∗B(y))

])
dBy (14)

which is by (19,13)

≥
∧

x′∈X

(
A′(x′)→

((
E(x, x′)→ A(x)

)
∗B(y)

) )
and by (16)

=
∧

x′∈X

(
A′(x′)→

∧
x∈X

((
E(x, x′)→ A(x)

)
∗B(y)

))
=
∧

x′∈X

(
A′(x′)→

( ∧
x∈X

(
E(x, x′)→ A(x)

)
∗B(y)

))
=
∧

x′∈X

(
A′(x′)→

(
Â(x′) ∗B(y)

))
d By (38)

=
∧

x′∈X

(
A′(x′)→

(
A(x′) ∗B(y)

))⌈
∵ Â = A ,

which implies that (Â′CŘ)(y) = (A′CŘ)(y) , for any y ∈ Y .

The above result, as already noted in the case of CRI, shows
the robustness of the BK-Subproduct inference in scenarios
where there can be slight discrepancies between the intended
input and the actual input and reinforces the fact that even
in the case of BK-Subproduct the indistinguishability induced
by the fuzzy set representing the linguistic expression in the
premise of the rule cannot be overcome.

Once again, as in the case of CRI, we may generalize the
result concerning the indistinguishability of the premises for
an arbitrary finite number of rules. Note that in the case of the
BK-Subproduct the fuzzy relation R̂ is plays the main role.

Theorem 3.23: Let S = (X,Y, {Ai, Bi}i=1,...,n,L,C) be
a structure for fuzzy rules (3). Let E be a fuzzy equivalence
relation on X with respect to which each Ai is extensional,
for arbitrary i = 1, . . . , n. Let A′ ∈ F(X) be any fuzzy set,
then

A′ C R̂ = Â′ C R̂.

Proof: The inequality Â′CR ≤ A′CR holds for arbitrary
fuzzy relation R ∈ F(X×Y ), see the proof of Theorem 3.22.

Thus it suffices to prove the other inequality for R̂, i.e.,
Â′C R̂ ≥ A′C R̂. Since each Ai is extensional with respect to
E for arbitrary i, Ai(x

′) ≥ Ai(x)∗E(x, x′) for any x, x′ ∈ X
and we have by (12)

Ai(x
′)→ Bi(y)

≤ (Ai(x) ∗ E(x, x′))→ Bi(y) , y ∈ Y . (40)
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For any x ∈ X , we have

Â′(x)→
n∧

i=1

(Ai(x)→ Bi(y))

=
∨

x′∈X

(
A′(x′) ∗ E(x, x′)

)
→

n∧
i=1

(
Ai(x)→ Bi(y)

)
which is by (18,16,14,40)

=
∧

x′∈X

([
A′(x′) ∗ E(x, x′)

]
→

n∧
i=1

(
Ai(x)→ Bi(y)

))
=

n∧
i=1

∧
x′∈X

([
A′(x′) ∗ E(x, x′)

]
→
(
Ai(x)→ Bi(y)

))
=

n∧
i=1

∧
x′∈X

(
A′(x′)→

[
E(x, x′)→ (Ai(x)→ Bi(y))

])
=

n∧
i=1

∧
x′∈X

(
A′(x′)→

((
E(x, x′) ∗Ai(x)

)
→ Bi(y)

) )
≥

n∧
i=1

∧
x′∈X

(
A′(x′)→

(
Ai(x

′)→ Bi(y)
))

which implies (Â′ C R̂)(y) ≥ (A′ C R̂)(y), y ∈ Y .

IV. COMPUTATIONAL ASPECTS OF FUZZY RELATIONAL
INFERENCES

In this section, we deal with the computational aspects of
CRI and BK-Subproduct inferences. Firstly, we show that all
the advantages enjoyed by CRI are also available with the
BK-Subproduct too. However, both CRI and BK-Subproduct
- being fuzzy relational inferences - possess some drawbacks.
Recently JAYARAM [41] had proposed a modified form of CRI,
viz., Hierarchical CRI scheme, to overcome some of these
drawbacks. We show that a similar hierarchical inferencing
is possible even in the case of BK-Subproduct and hence is a
computationally viable alternative for the CRI.

A. Inferencing in the Case of Singleton Fuzzy Inputs - Property
(iv)

The following definition will be useful in this subsection.
Definition 4.1: A fuzzy set on a non-empty set X , A : X →

[0, 1], is said to be a ”fuzzy singleton” if there exists an x0 ∈ X
such that A has the following representation:

A(x) =

{
1, if x = x0 ,

0, if x 6= x0 .
(41)

We say A attains normality at x0 ∈ X .
It is not uncommon in some contexts to deal with fuzzy

singleton inputs. For instance, in typical control situations the
input is usually a crisp value which is fuzzified before it is
presented to a fuzzy system to obtain the output. There are
many fuzzification methods, i.e., procedures to convert a crisp
value into a fuzzy set with different shapes and spread based
on this value. Most often the singleton fuzzifier which converts

a crisp input x′ ∈ X into a singleton A′ ∈ F(X) which
attains normality at x′ is used. Note, that this seeming formal
conversion is crucial since it allows us to apply any fuzzy
relational inference which, in principle, deals only with fuzzy
inputs.

Given a crisp input x′ ∈ X and which is fuzzified using a
singleton fuzzifier, from a computational point of view, it is
highly desirable to deal with such fuzzy relational inference
mechanisms whose inferred output is dependent only on the
chosen fuzzy relation R modeling a given fuzzy rule base and
the inference plays a role only in case of a fuzzy input, i.e.,
the inferred output f@

R (A′) = B′ ∈ F(Y ) is given by B′(y) =
R(x′, y), for arbitrary y ∈ Y .

This property, which saves computational costs, holds for
CRI. From the following equalities, we see that the discussed
property is valid even for the BK-Subproduct. Let the given
singleton fuzzy input A′ attains normality at some x′ ∈ X .
Then the inferred output using the BK-Subproduct is given by

B′(y) =
∧
x∈X

(A′(x)→ R(x, y))

= (A′(x′)→ R(x′, y)) ∧
∧
x∈X
x6=x′

(A′(x)→ R(x, y))

= (1→ R(x′, y)) ∧
∧
x∈X
x 6=x′

(0→ R(x, y))

= R(x′, y) ∧ 1 = R(x′, y), y ∈ Y .

It should be emphasized that the above property is not gen-
erally valid for any fuzzy relational composition. Neither the
Bandler-Kohout superproduct nor the Bandler-Kohout square
product [24], [42] nor any of the inf −S fuzzy relational
compositions keep this essential property. This is one of the
reasons why the BK-Subproduct is, other than the CRI, a
privileged composition and gives a clear motivation to study
all the properties investigated in Section III above.

B. Equivalence between FITA and FATI - Property (v)
It is a well known fact that one of the reasons to use the

Cartesian product approach to model a fuzzy rule base is
the possible saving of computational efforts. In other words,
combination of ◦ with Ř requires fewer computations than
the combination with the fuzzy relation R̂. This is due to the
following sequence of equalities:

B(y) =
∨
x∈X

(
A′(x) ∗

n∨
i=1

(Ai(x) ∗Bi(y))

)

=
∨
x∈X

n∨
i=1

(A′(x) ∗ (Ai(x) ∗Bi(y)))

=

n∨
i=1

∨
x∈X

((A′(x) ∗Ai(x)) ∗Bi(y))

=

n∨
i=1

( ∨
x∈X

(A′(x) ∗Ai(x)) ∗Bi(y)

)
, y ∈ Y .
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It means that we do not have to compose all rules to a fuzzy
relation, we just find the highest degree of intersection of a
given input A′ and a particular rule antecedent and multiply
it by the corresponding consequent. This approach is then
applied rule per rule and the results are composed together by
the maximum operation. This reduction in the computational
costs is nothing but the effect of the equivalence of FITA and
FATI inference strategies [2].

So, it may be again generally considered even for other
inference mechanisms. Due to the following sequence of
equalities:

B(y) =
∧
x∈X

(
A′(x)→

n∧
i=1

(Ai(x)→ Bi(y))

)

=
∧
x∈X

n∧
i=1

(A′(x)→ (Ai(x)→ Bi(y)))

=

n∧
i=1

∧
x∈X

((A′(x) ∗Ai(x))→ Bi(y))

=

n∧
i=1

( ∨
x∈X

(A′(x) ∗Ai(x))→ Bi(y)

)
, y ∈ Y ,

we may state that even in the case of the BK-Subproduct C
and an appropriate model of fuzzy rules (3) given by R̂, the
FATI inference strategy is equivalent to the FITA inference
strategy.

The difference lies in the propriety of the chosen fuzzy
relation modelling fuzzy rules (3) with respect to a chosen
inference mechanism. In the case of CRI, there is no other
choice but Ř if we want to reduce the computational efforts
by an equivalent FITA strategy. While in case of the BK
subproduct, the same holds for R̂. In other words, there should
be other reasons leading to the use of Ř than the computational
costs because if this is the only reason, we still may reduce
the computational efforts by the use of the BK subproduct
as an inference mechanism while still keeping the conditional
nature of rules (3) by the choice of R̂. Then the correctness
of the model (fundamental interpolation condition) should be
ensured by the conditions given in Theorem 3.6. On the other
hand, this is also the case when Ř is employed where the same
conditions have to be imposed, see Theorem 3.2.

Remark 4.2: Note that the expression
∨

x∈X(A(x) ∗
A′(x)), with ∗ a t-norm, is in fact, one of the earliest measures
proposed by ZADEH [43] to determine the similarity between
two fuzzy sets A,A′ ∈ F(X). Moreover, typically, antecedent
fuzzy sets form some partition (e.g. the Ruspini partition [44])
and the input fuzzy set is of a limited support so that there are
such i for which the similarity between the input A′ and the
antecedent Ai, given by the above measure, is zero and the
computation gets further simplified.

C. Drawbacks of a Fuzzy Relational Inference
So far, we have considered only Single-Input-Single-Output

(SISO) fuzzy rules. However, in practice, one often encounters
situations which demand that inputs from multiple sources /

dimensions be considered and hence the need arises for dealing
with Multiple-Input-Single-Output (MISO) fuzzy rules of the
following type - for the sake of notational simplicity and ease
of understanding we only deal with a 2-input-1-output MISO
fuzzy rules, which can be extended in an obvious way to more
than 2 input dimensions:

IF x is Ai AND y is Bi THEN z is Ci (42)

where Ai ∈ F(X), Bi ∈ F(Y ) and Ci ∈ F(Z), respectively.
Note that both in the case of MISO and SISO rules the input

fuzzy set(s) can be seen to be a fuzzy set on either a single
domain or a Cartesian product of the domains, hence all the
results presented so far, although discussed in the framework
of SISO rules, are valid even when dealing with MISO fuzzy
rules.

Fuzzy relational inference schemes are not without their
drawbacks because of the computational and space complex-
ities involved (see, e.g., CORNELIS et al. [45], MARTIN-
CLOUAIRE [46], DEMIRLI and TURKSEN [47]). These are
compounded greatly, especially, while dealing with MISO
fuzzy rules. Since CRI and the BK-Subproduct both belong
to the class of fuzzy relational inferences they are not immune
to these drawbacks.

The complexity of an inference algorithm stems mainly from
two factors:

(i) The process of inference itself. The fuzzy inferencing
schemes are generally resource consuming (both mem-
ory and time). Many of the inference schemes discretize
the underlying domains and hence the process becomes
computationally intensive.

(ii) The structure, complexity and the number of rules.
Depending on the shape of the underlying fuzzy sets
the number of parameters stored and processed varies.
Similarly, the manner in which multiple antecedents are
combined affects the processing complexity. Also an
increase in the number of rules only exacerbates the
problem. As the number of input variables and/or input
fuzzy sets increases, there is a combinatorial explosion
of rules in multiple fuzzy rule based systems.

We illustrate the above through the following example.
Example 4.3: Let A = [0.9 0.8 0.7 0.7] , B =

[1 0.6 0.8] , C = [0.1 0.1 0.2] , denote fuzzy sets defined
on, respectively, the following classical sets

X = {x1, x2, x3, x4}, Y = {y1, y2, y3}, Z = {z1, z2, z3}.

Let S = (X,Y, Z, {A,B,C},L,C) be the structure consid-
ered for the single fuzzy rule:

IF x is A AND y is B THEN z is C .

Let L be the Łukasiewicz complete residuated lattice, i.e., L =
([0, 1],∧,∨,⊗,→⊗, 0, 1) where ⊗ stands for the Łukasiewicz
t-norm x ⊗ y = max(0, x + y − 1) and →⊗ stands for the
Łukasiewicz implication x→⊗ y = min(1, 1− x+ y).
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Now, taking the Cartesian product of A and B with respect
to ⊗, we have

A⊗B =

 0.9 0.5 0.7
0.8 0.4 0.6
0.7 0.3 0.5
0.7 0.3 0.5

 .

Now, we have R̂(A,B;C) = [R̂(z1) R̂(z2) R̂(z3)], where
(A ⊗ B) →⊗ C = (A ⊗ B) →⊗ [0.1 0.1 0.2] and R̂(zi) =
(A⊗B)→⊗ zi. Thus

R̂(z1) = R̂(z2) =

 0.2 0.6 0.4
0.3 0.7 0.5
0.4 0.8 0.6
0.4 0.8 0.6

 ;

R̂(z3) =

 0.3 0.7 0.5
0.4 0.8 0.6
0.5 0.9 0.7
0.5 0.9 0.7

 .

Let A′ = [0.7 0.6 0.5 0.5], B′ = [0.8 0.5 0.7] be the given
fuzzy (non-singleton) inputs. Then

A′ ⊗B′ =

 0.5 0.1 0.4
0.4 0.1 0.3
0.3 0 0.2
0.3 0 0.2

 .

The output obtained from the BK-Subproduct is

C ′ = (A′ ⊗B′) C ((A⊗B)→⊗ C) = [0.7 0.7 0.8] . (43)

Remark 4.4: With the help of Example 4.3 above the
following observations can be made:

(i) Computational complexity: Though the computational
complexity largely depends on the choice of operators
employed, let us consider the following general case
of a p-input 1-output system where i-th fuzzy rule is
modelled by the fuzzy relation Ri ∈ F(X1, . . . , Xp, Y )
where Ri =

(
(A1

i ∗ · · · ∗ A
p
i ) → Bi

)
. Let the universe

of discourse Xj be discretized into pj points for each
j = 1, . . . , p. Then the complexity of a single inference
is proportional to O

(∏p
j=1 pj

)
. If pj = m, then it is

O(mp).
(ii) Space complexity: Again, for a p-input 1-output sys-

tem we have a p-dimensional matrix having
∏p

j=1 pj
entries. Hence we need to store p-dimensional matrices
for every fuzzy if-then rule.

(iii) Run-time Space Requirements: For example, consider
inferencing with the BK-Subproduct inference scheme
(8) in the case of a 2-input fuzzy if-then rule. Let the
universes of discourse X1, X2 and Y be discretized
into m, k, l points, respectively. Then the memory re-
quirements of the algorithm are as follows (see also
DEMIRLI and TÜRKSEN [47]): m·k ·l for (A∗B)→ C,
m ·k for combining the given facts A′ ∗B′ and l for the
consequent, where by ∗ we denote the t-norm used for
the Cartesian product. Overall, it is m · k · l+m · k+ l.

In the case m = k = l, the memory requirements
of the algorithm become m3 + m2 + m. Generalizing
this, in the case of p-inputs we have that the memory
requirements of the algorithm is O(m(p+1)).

There are many works proposing modifications to the clas-
sical CRI in an attempt to enhancing the efficiency in its
inferencing, see for example, the works by FULLÉR and his
group [48], [49], [50] and those of MOSER and NAVARA
[51], [52], [53]. In the case when there are more than two
antecedents involved in fuzzy inference, RUAN and KERRE
[54] have proposed an extension to the classical CRI, wherein
starting from a finite number of fuzzy relations of an arbitrary
number of variables but having some variables in common,
one can infer fuzzy relations among the variables of inter-
est. DEMIRLI and TURKSEN [47] proposed a Rule Break-up
method and showed that rules with two or more independent
variables in their premise can be simplified to a number of
inferences of rule bases with simple rules (only one variable
in their premise). For further modification of this method see
[55].

However, no such works exist for the BK-Subproduct to the
best of the authors’ knowledge. In the following we propose
a modified form of BK-Subproduct that alleviates some of the
concerns noted above, along the lines of the Hierarchical CRI
proposed by JAYARAM [41].

D. Hierarchical BK-Subproduct - Property (vi)

In [41], JAYARAM proposed a hierarchical variant of the CRI
where observation on particular axes are taken independently
and hierarchically and the overall output is deduced after all
observations were used in this step-by-step chain procedure.
On the contrary to the usual case where a Cartesian product of
all observations is computed and such a product serves as the
only fuzzy input with a vector variable. We follow this idea
with the BK subproduct as well.

Procedure for Hierarchical BK-Subproduct
Step 1 FOR i = 1 TO n DO

(i) Calculate R′i ∈ F(Y × Z): R′i = Bi → Ci

(ii) Calculate C ′i ∈ F(Z): C ′i = B CR′i
(iii) Calculate R′′i ∈ F(X × Z): R′′i = Ai → C ′i
(iv) Calculate C ′′i ∈ F(Z): C ′′i = ACR′′i

Step 2 AGGREGATE ALL C ′′i BY MINIMUM

We also remark that, although in [41] the author has given
the algorithm for the Hierarchical CRI only in the case of
inferencing with a single MISO rule, it can be extended in a
straight-forward manner to the case of multiple MISO rules, as
done here. However, for the sake of simplicity, the following
example, which demonstrates the reduction in computational
efforts and memory savings is given in the context of a single
MISO rule.

Example 4.5: Let the fuzzy sets A,B,C,A′, B′ be as in
Example 4.3 with the same structure S for the given fuzzy
rule. Inferencing with the Hierarchical BK-Subproduct, given
the input (A′, B′) we have
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Step 1 (i) B →⊗ C =

(
0.1 0.1 0.2
0.5 0.5 0.6
0.3 0.3 0.4

)
(44)

Step 1 (ii) C ′ = B′ C (B →⊗ C)

= [0.8 0.5 0.7] C (B →⊗ C)

= [0.3 0.3 0.4]

Step 1 (iii) A→⊗ C ′ =

 0.4 0.4 0.5
0.5 0.5 0.6
0.6 0.6 0.7
0.6 0.6 0.7


Step 1 (iv) C ′′ = A′ C (A→⊗ C ′)

= [0.7 0.6 0.5 0.5] C (A→⊗ C ′)
= [0.7 0.7 0.8] . (45)

Remark 4.6: From the above example it is clear that we can
convert a multi-input system to a single-input hierarchical sys-
tem employing, both employing the BK-Subproduct inference.
The effect becomes more pronounced when we have more than
two input variables. From the above Example 4.5 it can be
noticed that the most memory intensive step in the inference
is the calculation of the ‘current’ output fuzzy set (Steps 1 (ii)
& (iv)). Once again, considering the case of a p-input fuzzy
rule, if the input universe of discourse Xj , j = 1, 2, . . . , p are
discretized into pj points and the output universe of discourse
Z into l points, respectively, then the memory requirements
of this step, and hence of the algorithm itself, can easily be
seen to be p∗ · l+ l+ p∗, where p∗ = maxp

j=1 pj . In the case
m = p∗ = l we have the overall memory requirements to
be 2m + m2. It should also be emphasized that the memory
requirements are independent of the number of input variables,
as can be expected in any hierarchical setting.

Not only does the Example 4.5 illustrate the computational
efficiency of Hierarchical BK-Subproduct inference, it also
shows that the inference obtained from the original BK-
Subproduct is identical to the one obtained from the proposed
Hierarchical BK-Subproduct, i.e., (43) = C ′ = C ′′ = (45).
The following result shows that this equivalence is always
guaranteed under the structure S considered in this work.

Theorem 4.7: Let S = (X,Y, Z, {Ai, Bi, Ci}i=1,...,n,L,C)
be a structure for fuzzy rules as given in (42) and let
R̂ ∈ F(X × Y × Z) be given by

n∧
i=1

((Ai(x) ∗Bi(y))→ Ci(z)) , x ∈ X, y ∈ Y, z ∈ Z .

Then for any A ∈ F(X) and B ∈ F(Y ) all i = 1, . . . , n it is
true that

(A ∗B) C R̂ ≡
n∧

i=1

(AC (Ai → (B C (Bi → Ci)))) .

Proof: For an arbitrary z ∈ Z we have

[(A ∗B) C R̂](z)

=
∧
x,y

(
(A(x) ∗B(y))→

n∧
i=1

((Ai(x) ∗Bi(y))→ Ci(z))
)

=

n∧
i=1

∧
x,y

(
(A(x) ∗B(y))→ ((Ai(x) ∗Bi(y))→ Ci(z))

)
and by triple use of (14) we get

=

n∧
i=1

∧
x,y

((
A(x) ∗Ai(x) ∗B(y) ∗Bi(y)

)
→ Ci(z)

)
=

n∧
i=1

∧
x

(
(A(x) ∗Ai(x))→

∧
y

(
(B(y) ∗Bi(y))→ Ci(z))

))
which equals to
n∧

i=1

∧
x

(
A(x)→

(
Ai(x)→

∧
y

(B(y)→ (Bi(y)→ Ci(z)))
))

and therefore

[(A ∗B) C R̂](z) =

n∧
i=1

(AC (Ai → (B C (Bi → Ci)))) .

Theorem 4.7 proves the equivalence of outputs obtained
from the proposed algorithm of the hierarchical BK inference
mechanism and the original BK-Subproduct with two dimen-
sional inputs. Indeed, it may be systematically extended into
a case of inputs of an arbitrary finite dimension.

Now, we may state the following corollary of Theorem
3.6 and Theorem 4.7, which claims that if condition (26)
certifying the solvability of (28) holds than even the proposed
Hierarchical BK-Subproduct inference procedure keeps the
fundamental interpolation condition fulfilled.

Corollary 4.8: Let all the assumptions of Theorem 4.7 be
valid. Furthermore, let

n∨
i=1

(Ai(x) ∗Aj(x) ∗Bi(y) ∗Bj(y)) ≤
n∧

i=1

(Ci(z)↔ Cj(z))

holds for arbitrary x ∈ X, y ∈ Y, z ∈ Z and for arbitrary
i, j ∈ {1, . . . , n}. Then

n∧
i=1

(Ai C (Ai → (Bi C (Bi → Ci)))) ≡ Ci .

V. CONCLUSIONS

In this work, after recalling some of the properties that
are usually cited in favor of using the Compositional Rule of
Inference (CRI) introduced by ZADEH [1], viz., equivalent and
reasonable conditions for their solvability, their interpolative
properties and the preservation of the indistinguishability that
may be inherent in the input fuzzy sets, we have shown
that the Bandler-Kohout subproduct introduced in [24] does
possess all the above properties and hence is equally suitable
for consideration when reasoning with a system of fuzzy
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rules. Towards this end some new but equivalent results on
indistinguishability operations has also been presented.

Moreover, we show that under certain conditions the equiva-
lence of FITA and FATI can be shown for the Bandler-Kohout
subproduct, much like in the case of CRI. After citing some of
the main drawbacks of fuzzy relational inferences, we propose
a hierarchical inferencing scheme that alleviates many of these
in the BK-Subproduct inference. This method is amply illus-
trated with numerical examples. Finally, we have also shown
that if the structure for the considered fuzzy rules is chosen
appropriately then the outputs obtained from the Hierarchical
BK-Subproduct and the original BK-Subproduct are identical,
thus addressing the issues related to computational complexity.

Based on this work, one can see that the BK-Subproduct is
as much advantageous as the classical CRI proposed by Zadeh
and hence can be employed alternatively in applications. The
main difference lies in the fuzzy relation modelling a fuzzy rule
base which is combined with a particular inference mechanism.
It is shown that some computational advantages of the very
popular Mamdani-Assilian approach are valid only in the case
of the CRI inference mechanism, while if we use the BK-
Subproduct, then many of the advantages of using Ř are lost
and the implicational approach employing the fuzzy relation
R̂ assumes this privilege.

Therefore, we conclude that there is another added value
to the existence of two inference schemes with the same ap-
propriate properties - the possibility to freely choose between
two approaches of modeling a fuzzy rule base. Up to now,
the approach denoted by R̂ employing genuine implication
was considered a disadvantage because of its computational
complexity, although for some problems it is much more suit-
able [15]. This investigation shows that from the computational
point of view there is neither preferable model of a fuzzy
rule base nor preferable inference mechanism, there are only
preferable combinations of them.
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[40] M. Štěpnička, B. De Baets and L. Nosková, “On additive and multi-
plicative fuzzy models,” in New Dimensions in Fuzzy Logic and Related
Technologies - Vol 2., Proc. 5th Int. Conf. European Society for Fuzzy
Logic and Technology, Ostrava, Czech Republic, 2007, pp. 95-102.

[41] B. Jayaram, “On the law of importation (x∧y)→ z ≡ (x→ (y → z))
in fuzzy logic,” IEEE Trans. Fuzzy Syst., vol. 16, no. 1 pp. 130-144,
2008.

[42] W. Bandler and L. J. Kohout, “Fuzzy power sets and fuzzy implica-
tionoperators,” Fuzzy Sets and Systems, vol. 4, pp. 183-190, 1980.

[43] L. A. Zadeh, “Similarity relations and fuzzy orderings,” Inform. Sci.,
vol. 3, pp. 177-200, 1971.

[44] E. H. Ruspini, “A new approach to clustering,” Inform. and Control,
vol. 15, pp. 22-32, 1969.

[45] Ch. Cornelis, M. DeCock. and E. E. Kerre, “Efficient approximate
reasoning with positive and negative information,” in Knowledge-Based
Intelligent Information and Engineering Systems (Lecture Notes in
Artifical Intelligence series 3214), M. Gh. Negoita, R. J. Howlett and
L. C. Jain, Eds. Berlin, Germany: Springer, 2004, pp.779-785.

[46] R. Martin-Clouaire, “A fast generalized modus ponens,” BUSEFAL, vol.
18, pp. 75-82, 1984.

[47] K. Demirli, I. B. Türksen, “Rule break up with compositional rule of
inference,” Proc. 1992 IEEE Int. Conf. on Fuzzy Systems, San Diego,
USA, 1992, pp. 749-756.

[48] R. Fullér, Fuzzy Reasoning and Fuzzy Optimization. Turku, Finland:
TUCS General Publication, 1998.

[49] R. Fullér and B. Werners, The compositional rule of inference with
several relations, in Proc. Int. Conf. on Fuzzy Sets and its Applications,
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