5,395 research outputs found

    A New Virtual Reality Interface for Underwater Intervention Missions

    Get PDF
    Ponencia presentada en IFAC-PapersOnLine, Volume 53, Issue 2, 2020, Pages 14600-14607Nowadays, most underwater intervention missions are developed through the well-known work-class ROVs (Remote Operated Vehicles), equipped with teleoperated arms under human supervision. Thus, despite the appearance on the market of the first prototypes of the so-called I-AUV (Autonomous Underwater Vehicles for Intervention), the most mature technology associated with ROVs continues to be trusted. In order to fill the gap between ROVs and incipient I-AUVs technology, new research is under progress in our laboratory. In particular, new HRI (Human Robot Interaction) capabilities are being tested inside a three-year Spanish coordinated project focused on cooperative underwater intervention missions. In this work new results are presented concerning a new user interface which includes immersion capabilities through Virtual Reality (VR) technology. It is worth noting that a new HRI module has been demonstrated, through a pilot study, in which the users had to solve some specific tasks, with minimum guidance and instructions, following simple Problem Based Learning (PBL) scheme. Finally, it is noticeable that, although this is only a work in progress, the obtained results are promising concerning friendly and intuitive characteristics of the developed HRI module. Thus, some critical aspects, like complexity fall, training time and cognitive fatigue of the ROV pilot, seem more affordable now

    Recent Progress in the RAUVI Project: A Reconfigurable Autonomous Underwater Vehicle for Intervention

    Get PDF
    Starting in January 2009, the RAUVI project is a three years coordinated research action funded by the Spanish Ministry of Research and Innovation. This paper shows the research evolution during the first half of RAUVI’s live, bearing in mind that the long term objective is to design and develop an underwater autonomous robot able to perceive the environment and, by means of a specific hand-arm system, perform autonomously simple intervention tasks in shallow waters.This research was partly supported by the European Commission’s Seventh Framework Programme FP7/2007- 2013 under grant agreement 248497 (TRIDENT Project), by Spanish Ministry of Research and Innovation DPI2008-06548- C03 (RAUVI Project), and by Fundació Caixa Castelló- Bancaixa P1-1B2009-50

    Improving the energy efficiency of autonomous underwater vehicles by learning to model disturbances

    Get PDF
    Energy efficiency is one of the main challenges for long-term autonomy of AUVs (Autonomous Underwater Vehicles). We propose a novel approach for improving the energy efficiency of AUV controllers based on the ability to learn which external disturbances can safely be ignored. The proposed learning approach uses adaptive oscillators that are able to learn online the frequency, amplitude and phase of zero-mean periodic external disturbances. Such disturbances occur naturally in open water due to waves, currents, and gravity, but also can be caused by the dynamics and hydrodynamics of the AUV itself. We formulate the theoretical basis of the approach, and demonstrate its abilities on a number of input signals. Further experimental evaluation is conducted using a dynamic model of the Girona 500 AUV in simulation on two important underwater scenarios: hovering and trajectory tracking. The proposed approach shows significant energy-saving capabilities while at the same time maintaining high controller gains. The approach is generic and applicable not only for AUV control, but also for other type of control where periodic disturbances exist and could be accounted for by the controller. © 2013 IEEE

    State and Perspectives of Underwater Robotics - Role of Laboratory for Underwater Systems and Technologies

    Get PDF
    The state and perspectives of underwater robotics is presented. The role and achievements of Laboratory for underwater systems and technologies (LABUST) in this domain is described. Two LABUST projects are shortly described

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version

    Visually-Guided Manipulation Techniques for Robotic Autonomous Underwater Panel Interventions

    Get PDF
    The long term of this ongoing research has to do with increasing the autonomy levels for underwater intervention missions. Bearing in mind that the speci c mission to face has been the intervention on a panel, in this paper some results in di erent development stages are presented by using the real mechatronics and the panel mockup. Furthermore, some details are highlighted describing two methodologies implemented for the required visually-guided manipulation algorithms, and also a roadmap explaining the di erent testbeds used for experimental validation, in increasing complexity order, are presented. It is worth mentioning that the aforementioned results would be impossible without previous generated know-how for both, the complete developed mechatronics for the autonomous underwater vehicle for intervention, and the required 3D simulation tool. In summary, thanks to the implemented approach, the intervention system is able to control the way in which the gripper approximates and manipulates the two panel devices (i.e. a valve and a connector) in autonomous manner and, results in di erent scenarios demonstrate the reliability and feasibility of this autonomous intervention system in water tank and pool conditions.This work was partly supported by Spanish Ministry of Research and Innovation DPI2011-27977-C03 (TRITON Project) and DPI2014-57746-C3 (MERBOTS Project), by Foundation Caixa Castell o-Bancaixa and Universitat Jaume I grant PID2010-12, by Universitat Jaume I PhD grants PREDOC/2012/47 and PREDOC/2013/46, and by Generalitat Valenciana PhD grant ACIF/2014/298. We would like also to acknowledge the support of our partners inside the Spanish Coordinated Projects TRITON and MERBOTS: Universitat de les Illes Balears, UIB (subprojects VISUAL2 and SUPERION) and Universitat de Girona, UdG (subprojects COMAROB and ARCHROV)

    ISME research trends: Marine robotics for emergencies at sea

    Get PDF
    One of the main recent research trends of the Italian Interuniversity Research Center on Integrated Systems for Marine Environment (ISME) is the use of marine cooperative teams of autonomous robots within the fields of security, prevention and management of emergencies at sea. Such fields are of worldwide interest for obvious reasons, but they have recently gained relevance in the current historical moment, especially in the Mediterranean sea. Within such a dramatic context, the use of robots could certainly provide helpful for the execution of patrolling and detection, identification and classification of interesting elements, such as people to be saved or oil leaks, as well as the successive execution of the intervention/rescue strategy. This paper presents the Key Enabling Technologies as well as some Key Research Areas that are being currently investigated by ISME toward the ambitious objective of employing robotic solutions for the management of emergencies at sea
    corecore