7,414 research outputs found

    Formulating the cognitive design problem of air traffic management

    Get PDF
    Evolutionary approaches to cognitive design in the air traffic management (ATM) system can be attributed with a history of delayed developments. This issue is well illustrated in the case of the flight progress strip where attempts to design a computer-based system to replace the paper strip have consistently been met with rejection. An alternative approach to cognitive design of air traffic management is needed and this paper proposes an approach centred on the formulation of cognitive design problems. The paper gives an account of how a cognitive design problem was formulated for a simulated ATM task performed by controller subjects in the laboratory. The problem is formulated in terms of two complimentary models. First, a model of the ATM domain describes the cognitive task environment of managing the simulated air traffic. Second, a model of the ATM worksystem describes the abstracted cognitive behaviours of the controllers and their tools in performing the traffic management task. Taken together, the models provide a statement of worksystem performance, and express the cognitive design problem for the simulated system. The use of the problem formulation in supporting cognitive design, including the design of computer-based flight strips, is discussed

    Influences on aircraft target off-block time prediction accuracy

    Get PDF
    With Airport Collaborative Decision Making (A-CDM) as a generic concept of working together of all airport partners, the main aim of this research project was to increase the understanding of the Influences on the Target Off-Block Time (TOBT) Prediction Accuracy during A-CDM. Predicting the TOBT accurately is important, because all airport partners use it as a reference time for the departure of the flights after the aircraft turn-round. Understanding such influencing factors is therefore not only required for finding measures to counteract inaccurate TOBT predictions, but also for establishing a more efficient A-CDM turn-round process. The research method chosen comprises a number of steps. Firstly, within the framework of a Cognitive Work Analysis, the sub-processes as well as the information requirements during turn-round were analysed. Secondly, a survey approach aimed at finding and describing situations during turn-round that are critical for TOBT adherence was pursued. The problems identified here were then investigated in field observations at different airlines’ operation control rooms. Based on the findings from these previous steps, small-scale human-in-the-loop experiments were designed aimed at testing hypotheses about data/information availability that influence TOBT predictability. A turn-round monitoring tool was developed for the experiments. As a result of this project, the critical chain of turn-round events and the decisions necessary during all stages of the turn-round were identified. It was concluded that information required but not shared among participants can result in TOBT inaccuracy swings. In addition, TOBT predictability was shown to depend on the location of the TOBT turn-round controller who assigns the TOBT: More reliable TOBT predictions were observed when the turn-round controller was physically present at the aircraft. During the experiments, TOBT prediction could be improved by eight minutes, if available information was cooperatively shared ten minutes prior turn-round start between air crews and turn-round controller; TOBT prediction could be improved by 15 minutes, if additional information was provided by ramp agents five minutes after turnround start

    Simulation of Team Cooperation Processes in En-Route Air Traffic Control

    Get PDF
    Recent increase in air traffic demands makes the role of Air Traffic Control (ATC), which supports safety and efficiency of aviation, more important than ever. As aviation technologies have progressed, automation and computer supports are being introduced in cockpits, but ATC still heavily relies on human expertise of Air Traffic Control Officers (ATCOs). It is therefore necessary to understand ATC tasks from a viewpoint of ATCOsĂą cognitive behaviour in order to assess and improve task schemes and training programs for ATC

    3D-in-2D Displays for ATC.

    Get PDF
    This paper reports on the efforts and accomplishments of the 3D-in-2D Displays for ATC project at the end of Year 1. We describe the invention of 10 novel 3D/2D visualisations that were mostly implemented in the Augmented Reality ARToolkit. These prototype implementations of visualisation and interaction elements can be viewed on the accompanying video. We have identified six candidate design concepts which we will further research and develop. These designs correspond with the early feasibility studies stage of maturity as defined by the NASA Technology Readiness Level framework. We developed the Combination Display Framework from a review of the literature, and used it for analysing display designs in terms of display technique used and how they are combined. The insights we gained from this framework then guided our inventions and the human-centered innovation process we use to iteratively invent. Our designs are based on an understanding of user work practices. We also developed a simple ATC simulator that we used for rapid experimentation and evaluation of design ideas. We expect that if this project continues, the effort in Year 2 and 3 will be focus on maturing the concepts and employment in a operational laboratory settings

    Collaborative decision making in complex work settings: a process of managing inter dependencies

    Get PDF
    There exists disparity between the conceptualization and occurrence of Collaborative Decision Making (CDM) in everyday work activities of complex work settings. Current notions in the field of Computer Supported Cooperative Work (CSCW) based on studies of decision making in groups typically portray CDM as an isolated event in which multiple personnel jointly undertake decision making. In the real world, however, decisions are made during work performance and interlaced with other processes and activities. Moreover, the complex work setting is a cooperative arrangement in which decision making is distributed. This research aims to alleviate the disparity by investigating how people in a complex working environment make decisions collaboratively. The original contribution to knowledge made by this thesis is the theory of CDM as a process of managing interdependencies. Field-studies conducted in an airport to examine the way CDM is undertaken during Air Traffic Control operations inform theory development. The study takes a qualitative approach and is guided by Grounded Theory Methodology (GTM). The findings of this research indicate that undertaking decision making in the cooperative arrangement of complex work settings requires managing the distributions and interconnections inherent in this setup. In addition, participation and contribution of personnel in decision making is found to be structured by the dependencies between their activities. These findings form the central focus of the theory leading to the depiction of CDM as a process of managing interdependencies. The theory presented in this thesis clarifies and extends existing views by explicating the differentiated process of CDM in the cooperative arrangement of a complex work setting. Based on this a new definition of CDM is formulated. In addition, a conceptual framework of ten parameters is derived to serve as a tool for analysing CDM taking place in a particular work setting. Application of this framework is demonstrated by analysing an aircraft accident report to draw insights about the occurrence of CDM in this setting

    Human behaviour modelling in complex socio-technical systems : an agent based approach

    No full text
    For many years we have been striving to understand human behaviour and our interactions with our socio-technological environment. By advancing our knowledge in this area, we have helped the design of new or improved work processes and technologies. Historically, much of the work in analysing social interactions has been conducted within the social sciences. However, computer simulation has brought an extra tool in trying to understand and model human behaviours. Using an agent based approach this presentation describes my work in constructing computational models of human behaviour for informing design through simulation. With examples from projects in two main application areas of crisis and emergency management, and energy management I describe how my work addresses some main issues in agent based social simulation. The first concerns the process by which we develop these models. The second lies in the nature of socio-technical systems. Human societies are a perfect example of a complex system exhibiting characteristics of self-organisation, adaptability and showing emergent phenomena such as cooperation and robustness. I describe how complex systems theory may be applied to improve our understanding of socio-technical systems, and how our micro level interactions lead to emergent mutual awareness for problem-solving. From agent based simulation systems I show how context awareness may be modelled. Looking forward to the future, I discuss how the increasing prevalence of artificial agents in our society will cause us to re-examine the new types of interactions and cooperative behaviours that will emerge.Depuis de nombreuses annĂ©es, nous nous sommes efforcĂ©s de comprendre le comportement humain et nos interactions avec l'environnement sociotechnique. GrĂące Ă  l'avancĂ©e de nos connaissances dans ce domaine, nous avons contribuĂ© Ă  la conception de technologies et de processus de travail nouveaux ou amĂ©liorĂ©s. Historiquement, une part importante du travail d'analyse des interactions sociales fut entreprise au sein des sciences sociales. Cependant, la simulation informatique a apportĂ© un nouvel outil pour tenter de comprendre et de modĂ©liser les comportements humains. En utilisant une approche Ă  base d'agents, cette prĂ©sentation dĂ©crit mon travail sur la construction de modĂšles informatiques du comportement humain pour guider la conception par la simulation. A l'aide d'exemples issus de projets des deux domaines d'application que sont la gestion des crises et de l'urgence et la gestion de l'Ă©nergie, je dĂ©cris comment mon travail aborde certains problĂšmes centraux Ă  la simulation sociale Ă  base d'agents. Le premier concerne le processus par lequel nous dĂ©veloppons ces modĂšles. Le second problĂšme provient de la nature des systĂšmes sociotechniques. Les sociĂ©tĂ©s humaines constituent un exemple parfait de systĂšme complexe possĂ©dant des caractĂ©ristiques d'auto-organisation et d'adaptabilitĂ©, et affichant des phĂ©nomĂšnes Ă©mergents tels que la coopĂ©ration et la robustesse. Je dĂ©cris comment la thĂ©orie des systĂšmes complexes peut ĂȘtre appliquĂ©e pour amĂ©liorer notre comprĂ©hension des systĂšmes sociotechniques, et comment nos interactions au niveau microscopique mĂšnent Ă  l'Ă©mergence d'une conscience mutuelle pour la rĂ©solution de problĂšmes. A partir de systĂšmes de simulation Ă  base d'agents, je montre comment la conscience du contexte peut ĂȘtre modĂ©lisĂ©e. En terme de perspectives, j'expliquerai comment la hausse de la prĂ©valence des agents artificiels dans notre sociĂ©tĂ© nous forcera Ă  considĂ©rer de nouveaux types d'interactions et de comportements coopĂ©ratifs

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Engage D3.5 Opportunities for innovative ATM research (interim report)

    Get PDF
    This document reports on the topics and academic disciplines of past Exploratory Research projects, notably SESAR Workpackage E (long-term and innovative research) and SESAR Exploratory Research (ER) with a view of tracing the evolution of research as well as opportunities for future research. This analysis is complemented with relevant activities in Engage, such as the Engage thematic challenges
    • 

    corecore