11 research outputs found

    RAAC: A bandwidth estimation technique for admission control in MANET

    Get PDF
    The widespread of wireless mobile network have increased the demand for its applications. Providing a reliable QoS in wireless medium, especially mobile ad-hoc network (MANET), is quite challenging and remains an ongoing research trend. One of the key issues of MANET is its inability to accurately predict the needed and available resources to avoid interference with already transmitting traffic flow. In this work, we propose a resource allocation and admission control (RAAC) solution. RAAC is an admission control scheme that estimates the available bandwidth needed within a network, using a robust and accurate resource estimation technique. Simulation results obtained show that our proposed scheme for MANET can efficiently estimate the available bandwidth and outperforms other existing approaches for admission control with bandwidth estimation

    Bandwidth Estimation for Admission Control in MANET: Review and Conceptual MANET Admission Control Framework

    Get PDF
    The widespread of wireless mobile network have increased the demand for its applications. Providing a reliable QoS in wireless medium, especially mobile ad-hoc network (MANET), is quite challenging and remains an ongoing research trend. One of the key issues of MANET is its inability to accurately predict the needed and available resources to avoid interference with already transmitting traffic flow. In this work, we propose a resource allocation and admission control (RAAC) solution. RAAC is an admission control scheme that estimates the available bandwidth needed within a network, using a robust and accurate resource estimation technique. Simulation results obtained show that our proposed scheme for MANET can efficiently estimate the available bandwidth and outperforms other existing approaches for admission control with bandwidth estimation

    PENGARUH INTERFERENSI HIDDEN NODE TERHADAP MODEL PREDIKSI KETERSEDIAAN BANDWIDTH DI JARINGAN NIRKABEL

    Get PDF
    Ketersediaan bandwidth merupakan salah satu aspek penting untuk menjamin QoS dalam transmisi data, terutama pada jaringan nirkabel. Walaupun demikian, prediksi ketersediaan pada jaringan nirkabel masih sulit dilakukan karena medium transmisi dapat digunakan oleh beberapa node secara bersamaan. Selain itu jaringan nirkabel juga rentan terhadap pengaruh dari sinyal transmisi yang dihasilkan dari node lain, terutama hidden node. Beberapa penelitian telah dilakukan untuk mengembangkan model prediksi ketersediaan bandwidth. Walaupun demikian, belum terdapat mekanisme terstandarisasi yang digunakan untuk mengevaluasi ketersediaan bandwidth pada jaringan nirkabel. Selain itu tingkat akurasi dari setiap model juga masih belum diketahui ketika diimplementasikan pada jaringan nirkabel, terutama dengan keberadaan hidden node. Oleh karena itu penelitian ini berupaya untuk menginvestigasi kinerja dari setiap model untuk memprediksi ketersediaan bandwidth pada jaringan nirkabel dengan interferensi hidden node. Model prediksi yang dibandingkan adalah Distributed Lagrange Interpolation Based Available Bandwidth Estimation (DLI-ABE), Cognitive Passive Estimation Of The Available Bandwidth (cPEAB),  Improved Available Bandwidth (IAB), dan Available Bandwidth Estimation (ABE). Percobaan dilakukan dalam skala simulasi yang dikembangkan menggunakan simulasi jaringan OMNet++. Hasil penelitian menunjukan bahwa model ABE memperoleh tingkat akurasi yang paling baik sebesar 85,25%

    Passive Available Bandwidth Estimation Based on Collision Probability and Node State Synchronization in Wireless Networks

    Get PDF
    In wireless networks, available bandwidth estimation is challenging because wireless channels are used by multiple users or applications concurrently. In this study, we propose a passive measurement scheme to estimate the available bandwidth in 802.12 wireless networks based on the combination and modification of two existing schemes, Distributed Lagrange Interpolation Based Available Bandwidth Estimation (DLI-ABE) and Accurate Passive Bandwidth Estimation (APBE). The proposed scheme uses the channel busy state, which is affected by transmitting or receiving processes caused by carrier sensing. Therefore, the sender and the receiver node should be synchronized using various states that can be affected by other nodes. Moreover, the proposed scheme was developed with the involvement of relevant calculation of possible overhead caused by control messaging that occurs in the Media Access Control (MAC) layer and collision probability caused by data flow from hidden nodes. The result showed that the proposed scheme can estimate the available bandwidth of wireless networks more accurately than DLI-ABE and APBE

    An Autonomous Channel Selection Algorithm for WLANs

    Get PDF
    IEEE 802.11 wireless devices need to select a channel in order to transmit their packets. However, as a result of the contention-based nature of the IEEE 802.11 CSMA/CA MAC mechanism, the capacity experienced by a station is not fixed. When a station cannot win a sufficient number of transmission opportunities to satisfy its traffic load, it will become saturated. If the saturation condition persists, more and more packets are stored in the transmit queue and congestion occurs. Congestion leads to high packet delay and may ultimately result in catastrophic packet loss when the transmit queue’s capacity is exceeded. In this thesis, we propose an autonomous channel selection algorithm with neighbour forcing (NF) to minimize the incidence of congestion on all stations using the channels. All stations reassign the channels based on the local monitoring information. This station will change the channel once it finds a channel that has sufficient available bandwidth to satisfy its traffic load requirement or it will force its neighbour stations into saturation by reducing its PHY transmission rate if there exists at least one successful channel assignment according to a predicting module which checks all the possible channel assignments. The results from a simple C++ simulator show that the NF algorithm has a higher probability than the dynamic channel assignment without neighbour forcing (NONF) to successfully reassign the channel once stations have become congested. In an experimental testbed, the Madwifi open source wireless driver has been modified to incorporate the channel selection mechanism. The results demonstrate that the NF algorithm also has a better performance than the NONF algorithm in reducing the congestion time of the network where at least one station has become congested

    A Remote Capacity Utilization Estimator for WLANs

    Get PDF
    In WLANs, the capacity of a node is not fixed and can vary dramatically due to the shared nature of the medium under the IEEE 802.11 MAC mechanism. There are two main methods of capacity estimation in WLANs: Active methods based upon probing packets that consume the bandwidth of the channel and do not scale well. Passive methods based upon analyzing the transmitted packets that avoid the overhead of transmitting probe packets and perform with greater accuracy. Furthermore, passive methods can be implemented locally or remotely. Local passive methods require an additional dissemination mechanism in order to communicate the capacity information to other network nodes which adds complexity and can be unreliable under adverse network conditions. On the other hand, remote passive methods do not require a dissemination mechanism and so can be simpler to implement and also do not suffer from communication reliability issues. Many applications (e.g. ANDSF etc) can benefit from utilizing this capacity information. Therefore, in this thesis we propose a new remote passive Capacity Utilization estimator performed by neighbour nodes. However, there will be an error associated with the measurements owing to the differences in the wireless medium as observed by the different nodes’ location. The main undertaking of this thesis is to address this issue. An error model is developed to analyse the main sources of error and to determine their impact on the accuracy of the estimator. Arising from this model, a number of modifications are implemented to improve the accuracy of the estimator. The network simulator ns2 is used to investigate the performance of the estimator and the results from a range of different test scenarios indicate its feasibility and accuracy as a passive remote method. Finally, the estimator is deployed in a node saturation detection scheme where it is shown to outperform two other similar schemes based upon queue observation and probing with ping packets

    Interference charecterisation, location and bandwidth estimation in emerging WiFi networks

    Get PDF
    Wireless LAN technology based on the IEEE 802.11 standard, commonly referred to as WiFi, has been hugely successful not only for the last hop access to the Internet in home, office and hotspot scenarios but also for realising wireless backhaul in mesh networks and for point -to -point long- distance wireless communication. This success can be mainly attributed to two reasons: low cost of 802.11 hardware from reaching economies of scale, and operation in the unlicensed bands of wireless spectrum.The popularity of WiFi, in particular for indoor wireless access at homes and offices, has led to significant amount of research effort looking at the performance issues arising from various factors, including interference, CSMA/CA based MAC protocol used by 802.11 devices, the impact of link and physical layer overheads on application performance, and spatio-temporal channel variations. These factors affect the performance of applications and services that run over WiFi networks. In this thesis, we experimentally investigate the effects of some of the above mentioned factors in the context of emerging WiFi network scenarios such as multi- interface indoor mesh networks, 802.11n -based WiFi networks and WiFi networks with virtual access points (VAPs). More specifically, this thesis comprises of four experimental characterisation studies: (i) measure prevalence and severity of co- channel interference in urban WiFi deployments; (ii) characterise interference in multi- interface indoor mesh networks; (iii) study the effect of spatio-temporal channel variations, VAPs and multi -band operation on WiFi fingerprinting based location estimation; and (iv) study the effects of newly introduced features in 802.11n like frame aggregation (FA) on available bandwidth estimation.With growing density of WiFi deployments especially in urban areas, co- channel interference becomes a major factor that adversely affects network performance. To characterise the nature of this phenomena at a city scale, we propose using a new measurement methodology called mobile crowdsensing. The idea is to leverage commodity smartphones and the natural mobility of people to characterise urban WiFi co- channel interference. Specifically, we report measurement results obtained for Edinburgh, a representative European city, on detecting the presence of deployed WiFi APs via the mobile crowdsensing approach. These show that few channels in 2.4GHz are heavily used and there is hardly any activity in the 5GHz band even though relatively it has a greater number of available channels. Spatial analysis of spectrum usage reveals that co- channel interference among nearby APs operating in the same channel can be a serious problem with around 10 APs contending with each other in many locations. We find that the characteristics of WiFi deployments at city -scale are similar to those of WiFi deployments in public spaces of different indoor environments. We validate our approach in comparison with wardriving, and also show that our findings generally match with previous studies based on other measurement approaches. As an application of the mobile crowdsensing based urban WiFi monitoring, we outline a cloud based WiFi router configuration service for better interference management with global awareness in urban areas.For mesh networks, the use of multiple radio interfaces is widely seen as a practical way to achieve high end -to -end network performance and better utilisation of available spectrum. However this gives rise to another type of interference (referred to as coexistence interference) due to co- location of multiple radio interfaces. We show that such interference can be so severe that it prevents concurrent successful operation of collocated interfaces even when they use channels from widely different frequency bands. We propose the use of antenna polarisation to mitigate such interference and experimentally study its benefits in both multi -band and single -band configurations. In particular, we show that using differently polarised antennas on a multi -radio platform can be a helpful counteracting mechanism for alleviating receiver blocking and adjacent channel interference phenomena that underlie multi -radio coexistence interference. We also validate observations about adjacent channel interference from previous studies via direct and microscopic observation of MAC behaviour.Location is an indispensable information for navigation and sensing applications. The rapidly growing adoption of smartphones has resulted in a plethora of mobile applications that rely on position information (e.g., shopping apps that use user position information to recommend products to users and help them to find what they want in the store). WiFi fingerprinting is a popular and well studied approach for indoor location estimation that leverages the existing WiFi infrastructure and works based on the difference in strengths of the received AP signals at different locations. However, understanding the impact of WiFi network deployment aspects such as multi -band APs and VAPs has not received much attention in the literature. We first examine the impact of various aspects underlying a WiFi fingerprinting system. Specifically, we investigate different definitions for fingerprinting and location estimation algorithms across different indoor environments ranging from a multi- storey office building to shopping centres of different sizes. Our results show that the fingerprint definition is as important as the choice of location estimation algorithm and there is no single combination of these two that works across all environments or even all floors of a given environment. We then consider the effect of WiFi frequency bands (e.g., 2.4GHz and 5GHz) and the presence of virtual access points (VAPs) on location accuracy with WiFi fingerprinting. Our results demonstrate that lower co- channel interference in the 5GHz band yields more accurate location estimation. We show that the inclusion of VAPs has a significant impact on the location accuracy of WiFi fingerprinting systems; we analyse the potential reasons to explain the findings.End -to -end available bandwidth estimation (ABE) has a wide range of uses, from adaptive application content delivery, transport-level transmission rate adaptation and admission control to traffic engineering and peer node selection in peer -to- peer /overlay networks [ 1, 2]. Given its importance, it has been received much research attention in both wired data networks and legacy WiFi networks (based on 802.11 a/b /g standards), resulting in different ABE techniques and tools proposed to optimise different criteria and suit different scenarios. However, effects of new MAC/PHY layer enhancements in new and next generation WiFi networks (based on 802.11n and 802.11ac standards) have not been studied yet. We experimentally find that among different new features like frame aggregation, channel bonding and MIMO modes (spacial division multiplexing), frame aggregation has the most harmful effect as it has direct effect on ABE by distorting the measurement probing traffic pattern commonly used to estimate available bandwidth. Frame aggregation is also specified in both 802.11n and 802.1 lac standards as a mandatory feature to be supported. We study the effect of enabling frame aggregation, for the first time, on the performance of the ABE using an indoor 802.11n wireless testbed. The analysis of results obtained using three tools - representing two main Probe Rate Model (PRM) and Probe Gap Model (PGM) based approaches for ABE - led us to come up with the two key principles of jumbo probes and having longer measurement probe train sizes to counter the effects of aggregating frames on the performance of ABE tools. Then, we develop a new tool, WBest+ that is aware of the underlying frame aggregation by incorporating these principles. The experimental evaluation of WBest+ shows more accurate ABE in the presence of frame aggregation.Overall, the contributions of this thesis fall in three categories - experimental characterisation, measurement techniques and mitigation/solution approaches for performance problems in emerging WiFi network scenarios. The influence of various factors mentioned above are all studied via experimental evaluation in a testbed or real - world setting. Specifically, co- existence interference characterisation and evaluation of available bandwidth techniques are done using indoor testbeds, whereas characterisation of urban WiFi networks and WiFi fingerprinting based location estimation are carried out in real environments. New measurement approaches are also introduced to aid better experimental evaluation or proposed as new measurement tools. These include mobile crowdsensing based WiFi monitoring; MAC/PHY layer monitoring of co- existence interference; and WBest+ tool for available bandwidth estimation. Finally, new mitigation approaches are proposed to address challenges and problems identified throughout the characterisation studies. These include: a proposal for crowd - based interference management in large scale uncoordinated WiFi networks; exploiting antenna polarisation diversity to remedy the effects of co- existence interference in multi -interface platforms; taking advantage of VAPs and multi -band operation for better location estimation; and introducing the jumbo frame concept and longer probe train sizes to improve performance of ABE tools in next generation WiFi networks

    On the Impact of 802.11n Frame Aggregation on End-to-End Available Bandwidth Estimation

    Get PDF
    Abstract-We consider for the first time available bandwidth estimation (ABE) in the context of 802.11n, which is fast replacing the legacy 802.11a/b/g networks. We experimentally show that the frame aggregation (FA) feature of 802.11n is the dominant one among 802.11n features affecting the ABE. Using an indoor 802.11n wireless testbed, we compare three ABE tools (WBest, DietTopp and pathChirp) in various cross-traffic scenarios. We find that FA significantly hurts the accuracy of all ABE tools; DietTopp and pathChirp are relatively more robust than WBest. Because faster available bandwidth estimation and less intrusiveness are desirable properties of any ABE tool and WBest satisfies them relatively better than the other two tools, we conduct an in-depth investigation into the harmful effect of FA on ABE using WBest. This in turn led us to come up with two key design principles to counter FA effects: (1) treating aggregated probes as one jumbo probe; and (2) generating a larger number of probes. We then develop an enhanced version of WBest termed WBest+ that incorporates these principles. Our evaluation shows that the new version is effective in achieving accurate ABE in the presence of FA

    Collaborative streaming of on demand videos for mobile devices

    Get PDF
    The 3G and LTE technologies made video on-demand a popular entertainment for users on the go. However, bandwidth insufficiency is an obstacle in providing high quality and smooth video playout in cellular networks. The objective of the proposed PhD research is to provide a user with high quality video streaming with minimal stalling time by aggregating bandwidth from ubiquitous nearby devices that may be using different radio networks
    corecore