48,324 research outputs found

    Weighted Class Complexity: A Measure of Complexity for Object Oriented System

    Get PDF
    Software complexity metrics are used to predict critical information about reliability and maintainability of software systems. Object oriented software development requires a different approach to software complexity metrics. In this paper, we propose a metric to compute the structural and cognitive complexity of class by associating a weight to the class, called as Weighted Class Complexity (WCC). On the contrary, of the other metrics used for object oriented systems, proposed metric calculates the complexity of a class due to methods and attributes in terms of cognitive weight. The proposed metric has been demonstrated with OO examples. The theoretical and practical evaluations based on the information theory have shown that the proposed metric is on ratio scale and satisfies most of the parameters required by the measurement theor

    An LSPI based reinforcement learning approach to enable network cooperation in cognitive wireless sensor networks

    Get PDF
    The number of wirelessly communicating devices increases every day, along with the number of communication standards and technologies that they use to exchange data. A relatively new form of research is trying to find a way to make all these co-located devices not only capable of detecting each other's presence, but to go one step further - to make them cooperate. One recently proposed way to tackle this problem is to engage into cooperation by activating 'network services' (such as internet sharing, interference avoidance, etc.) that offer benefits for other co-located networks. This approach reduces the problem to the following research topic: how to determine which network services would be beneficial for all the cooperating networks. In this paper we analyze and propose a conceptual solution for this problem using the reinforcement learning technique known as the Least Square Policy Iteration (LSPI). The proposes solution uses a self-learning entity that negotiates between different independent and co-located networks. First, the reasoning entity uses self-learning techniques to determine which service configuration should be used to optimize the network performance of each single network. Afterwards, this performance is used as a reference point and LSPI is used to deduce if cooperating with other co-located networks can lead to even further performance improvements

    WESTT (Workload, Error, Situational Awareness, Time and Teamwork): An analytical prototyping system for command and control

    Get PDF
    Modern developments in the use of information technology within command and control allow unprecedented scope for flexibility in the way teams deal with tasks. These developments, together with the increased recognition of the importance of knowledge management within teams present difficulties for the analyst in terms of evaluating the impacts of changes to task composition or team membership. In this paper an approach to this problem is presented that represents team behaviour in terms of three linked networks (representing task, social network structure and knowledge) within the integrative WESTT software tool. In addition, by automating analyses of workload and error based on the same data that generate the networks, WESTT allows the user to engage in the process of rapid and iterative “analytical prototyping”. For purposes of illustration an example of the use of this technique with regard to a simple tactical vignette is presented

    Intangible trust requirements - how to fill the requirements trust "gap"?

    Get PDF
    Previous research efforts have been expended in terms of the capture and subsequent instantiation of "soft" trust requirements that relate to HCI usability concerns or in relation to "hard" tangible security requirements that primarily relate to security a ssurance and security protocols. Little direct focus has been paid to managing intangible trust related requirements per se. This 'gap' is perhaps most evident in the public B2C (Business to Consumer) E- Systems we all use on a daily basis. Some speculative suggestions are made as to how to fill the 'gap'. Visual card sorting is suggested as a suitable evaluative tool; whilst deontic logic trust norms and UML extended notation are the suggested (methodologically invariant) means by which software development teams can perhaps more fully capture hence visualize intangible trust requirements

    A Programming Environment Evaluation Methodology for Object-Oriented Systems

    Get PDF
    The object-oriented design strategy as both a problem decomposition and system development paradigm has made impressive inroads into the various areas of the computing sciences. Substantial development productivity improvements have been demonstrated in areas ranging from artificial intelligence to user interface design. However, there has been very little progress in the formal characterization of these productivity improvements and in the identification of the underlying cognitive mechanisms. The development and validation of models and metrics of this sort require large amounts of systematically-gathered structural and productivity data. There has, however, been a notable lack of systematically-gathered information on these development environments. A large part of this problem is attributable to the lack of a systematic programming environment evaluation methodology that is appropriate to the evaluation of object-oriented systems

    A Review of Metrics and Modeling Techniques in Software Fault Prediction Model Development

    Get PDF
    This paper surveys different software fault predictions progressed through different data analytic techniques reported in the software engineering literature. This study split in three broad areas; (a) The description of software metrics suites reported and validated in the literature. (b) A brief outline of previous research published in the development of software fault prediction model based on various analytic techniques. This utilizes the taxonomy of analytic techniques while summarizing published research. (c) A review of the advantages of using the combination of metrics. Though, this area is comparatively new and needs more research efforts

    Attack-Surface Metrics, OSSTMM and Common Criteria Based Approach to “Composable Security” in Complex Systems

    Get PDF
    In recent studies on Complex Systems and Systems-of-Systems theory, a huge effort has been put to cope with behavioral problems, i.e. the possibility of controlling a desired overall or end-to-end behavior by acting on the individual elements that constitute the system itself. This problem is particularly important in the “SMART” environments, where the huge number of devices, their significant computational capabilities as well as their tight interconnection produce a complex architecture for which it is difficult to predict (and control) a desired behavior; furthermore, if the scenario is allowed to dynamically evolve through the modification of both topology and subsystems composition, then the control problem becomes a real challenge. In this perspective, the purpose of this paper is to cope with a specific class of control problems in complex systems, the “composability of security functionalities”, recently introduced by the European Funded research through the pSHIELD and nSHIELD projects (ARTEMIS-JU programme). In a nutshell, the objective of this research is to define a control framework that, given a target security level for a specific application scenario, is able to i) discover the system elements, ii) quantify the security level of each element as well as its contribution to the security of the overall system, and iii) compute the control action to be applied on such elements to reach the security target. The main innovations proposed by the authors are: i) the definition of a comprehensive methodology to quantify the security of a generic system independently from the technology and the environment and ii) the integration of the derived metrics into a closed-loop scheme that allows real-time control of the system. The solution described in this work moves from the proof-of-concepts performed in the early phase of the pSHIELD research and enrich es it through an innovative metric with a sound foundation, able to potentially cope with any kind of pplication scenarios (railways, automotive, manufacturing, ...)
    corecore