
An LSPI based reinforcement learning approach to
enable network cooperation in cognitive wireless

sensor networks
Milos Rovcanin, Eli De Poorter, Ingrid Moerman and Piet Demeester
Ghent University - IBBT, Department of Information Technology (INTEC)

Gaston Crommenlaan 8, Bus 201, 9050 Ghent, Belgium
Email: milos.rovcanin@intec.ugent.be, {firstname.lastname}@intec.ugent.be

Abstract—The number of wirelessly communicating devices
increases every day, along with the number of communication
standards and technologies that they use to exchange data. A
relatively new form of research is trying to find a way to make
all these co-located devices not only capable of detecting each
other’s presence, but to go one step further - to make them
cooperate. One recently proposed way to tackle this problem
is to engage into cooperation by activating ‘network services’
(such as internet sharing, interference avoidance, etc.) that offer
benefits for other co-located networks. This approach reduces
the problem to the following research topic: how to determine
which network services would be beneficial for all the cooperating
networks. In this paper we analyze and propose a conceptual
solution for this problem using the reinforcement learning
technique known as the Least Square Policy Iteration (LSPI).
The proposes solution uses a self-learning entity that negotiates
between different independent and co-located networks. First,
the reasoning entity uses self-learning techniques to determine
which service configuration should be used to optimize the
network performance of each single network. Afterwards, this
performance is used as a reference point and LSPI is used to
deduce if cooperating with other co-located networks can lead to
even further performance improvements.

Index Terms—Symbiotic networks, network optimization, self-
learning, reinforcement learning, service negotiation, incentive-
driven networking, cognitive negotiation engine, LSPI;

I. INTRODUCTION

The fact that wireless networks are becoming increasingly
complex, heterogeneous and dynamic is the main motivation
for the evolution of the cognitive networking concept. In
a cognitive network, devices are capable of observing their
environment, can change their own settings to improve their
network performance, and can learn about the consequences
of their actions to improve their decision making in the
future [7]. Decision making entities in such a network are
capable to plan actions according to the observed data and take
appropriate steps towards their execution. Gathering feedback
upon completion of all the planned tasks helps evaluate the
effects of the above taken decisions and improves the decision
making policy (see Fig. 1).

By introducing these concepts to the configuration of the
network stack, networks obtain a self-learning awareness
regarding the optimal use of their available settings and
resources based on observed environmental conditions. As a
result, human involvement during the operational lifetime can

Fig. 1. General concept of a cognitive cycle: 1 - gathering necessary
information; 2 - planning actions; 3 - taking actions; 4 - collecting feedback
for evaluation

be reduced to a minimum. Cognitive networking is related to
cognitive radio, but instead of optimizing radio settings the
main goal is to also reason about higher level networking
protocol.

The structure of this paper is organized as follows. The
related work (Section II) gives a broad overview of the related
work in terms of cognitive radios, cognitive networking and
self-learning networks. Afterwards, Section III describes the
use case this work focuses on: the SymbioNets project. Sec-
tion IV describes mathematical fundamentals of reinforcement
learning in general and also describes the LSPI algorithm
in more details. Section V gives detailed implementation
guidelines, along with an example of how to apply LSPI to
the SymbioNets negotiation engine. General issues and future
improvements are discussed in Section VI. Finally, Section VII
concludes the paper.

II. RELATED WORK

Recently, a number of research areas have applied self-
learning or cognitive reasoning methods to further optimize the
configuration of wireless sensor networks. The most notable
results were achieved with the following ones.

A. Software defined radios / cognitive radios

A software defined radio (SDR) is a radio that can (at run-
time) change it transmission or receiving settings (frequency,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55782560?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

modulation, etc) to emulate different types of radio technolo-
gies. The term ‘cognitive radio’ is used to refer to solutions
where decision software is added to intelligently and dynam-
ically configure a software defined radio [1]. Cognitive radio
solutions are typically used to realize one of the following use
cases:
• dynamically switching to the best available radio tech-

nology (‘always best connected paradigm’)
• opportunistic reuse of unused (licensed) spectrum
In addition, cognitive radios are also used to allow multiple

(non-licensed) communication technologies to share the same
frequency band. For example, the 2.4 GHz ISM band contains
(amongst others) Wi-Fi, Bluetooth and ZigBee technologies.
As a result, these wireless networks interfere with each other,
resulting in a degraded performance for all co-located net-
works [2]. By changing the channel activity sensitivity of a
software defined radio, Wi-Fi devices can be configured to
also detect transmitting ZigBee devices, thus resulting in less
packet collisions.

When considering current cognitive radio solutions, a num-
ber of limitations are typically encountered. (i) Cognitive
radio approaches are often limited to adapting the settings
of a single radio device (terminal-centric approaches) rather
than aiming for a network wide solution [3] or optimizing
the performance of a single network layer from a single
network (intra-network approaches) [4]. (ii) In addition, most
existing cognitive solutions focus on optimization of link-
layer performance, without considering the performance of
higher (end-to-end) networking protocols. To reach a network
performance that is truly optimal, the current state of the
art research needs to be extended so that cross-layer, cross-
network and cross-technology interactions are also taken into
account [5], [6]. In this paper, we will go beyond the existing
state-of-the-art by showing that our solutions can take into
account these high-level end-to-end interactions.

B. Self-learning

To reach this goal, the solutions proposed in this paper
utilize self-learning techniques to optimize the overall network
performance over multiple network layers. The concept of
self-learning relies on node capability to perceive the current
network conditions and predict at run-time a best course of
action based on the collected data. Difference paradigms are
used to enable this. Self-learning techniques are typically used
in situations where it is impossible to calculate or predict a
‘best’ solution in advance. The optimization of interacting
wireless networks are a good example: not only are the
characteristics of the wireless environment notoriously difficult
to predict and model, the influence of having multiple co-
located interacting networks are almost impossible to predict.
Different approaches towards self-learning exist.

Game theory describes network behavior in the form of a
game where nodes are the players. It is a game of balancing
costs and benefits of an each move, while taking into account
moves of all the other players. Game theory provides tools
for determining the existence of the steady state points (Nash

equilibrium) and their efficiency from the global point of
view (Pareto optimum). Power consumption, communication
medium contention and routing are the problems that were
most usually being solved using this concept [8].

Machine learning is a form of artificial intelligence. De-
cisions are modeled as actions that transfer the network to
a new state. By adding actual values to every state/action
pair, it is possible to make a distinction between “good” and
“bad” choices and to choose the most optimal decisions in
every given situation [9]. Techniques that made most notable
results are Q-learning, LSPI and Collaborative Reinforcement
learning [10].

Each of these mechanisms have their advantages and disad-
vantages and depending on the problem that is being solved,
some will give better practical results than others. A com-
parison of different reasoning techniques applied in wireless
sensor networks is given in [11].

III. THE SYMBIONETS USE CASE

As shown in the related work section, very different ap-
proaches are possible in the field of self-learning networks.
This paper will focus on realizing the negotiation engine
described in the ‘SymbioNets project’ [12] using self-learning
techniques. The SymbioNets project starts out from the fol-
lowing observations. Many optimization techniques (referred
to as ‘networking services’) influence multiple independent
and co-located networks. For example, activating interference
avoidance in one network can increase the reliability of both
the activating network and other co-located networks. Other
examples of network services are ‘shared routing’ (networks
can route each other’s packets) or the sharing of internet
connectivity. To this end, the SymbioNets proposed a novel
networking paradigm in which advanced cooperation is pos-
sible between otherwise independent networks (referred to as
‘communities’). This cooperation can take many forms:
• The sharing of information, such as environment infor-

mation or spectrum information;
• The sharing of infrastructure such as processing capacity

or the sharing of each other nodes for routing purposes;
• The sharing of (networking) services, can be offered to

each other, such as positioning, synchronization, address
translation, QoS functions, code updates, security provi-
sions or internet connectivity.

Each of the above optimization options is implemented as
a network service that can be activated or de-activated at run-
time in each of the cooperating networks. To enable intelligent
optimization over multiple networks, each network provides
its incentives (‘high-level network goals’) for cooperation.
Figure III depicts a simple use case where two independent
co-located sensor networks influence each other (since they
share the same spectrum), even though they are used for for
different purposes (e.g. controlling temperature in a building
and security).

Incentives, as mentioned above, are high level network goals
(high throughput, high reliability, low delay, high coverage
etc.). Since the two networks from Figure III have different

Fig. 2. Co-existing networks that use the same communication technologies
often influence each other. An example would be: temperature monitoring
network (black nodes) and a security network (blue hexagons) inside a facility.
To enable cooperation between the networks, both networks have a negotiation
entities (NE).

purposes, at least some of their incentives will be different.
Each network has a special node (a ‘negotiation entity’) that
negotiates with other networks on behalf of its network. The
negotiation engine can either be one of the network nodes, or
can exist as a dedicated trusted (third-party) server outside the
network. Negotiation entities should know or at least make
an accurate enough assumption about the impact that each
symbiotic service has on the incentives in each of the par-
ticipating sub-networks. For example, using channel selection
algorithms in one network might improve the other network’s
reliability incentive by 60 percent. Of course, activation of
this particular service will also (positively or negatively) affect
the incentives of the network that provides it. The negotiation
engine should balance between the benefits other communities
will have upon activating a certain service and the costs that
might occur inside the community that activates it. This sort of
information is crucial for the negotiation process and forming
of symbiotic network. It can be obtained in several ways:(i)
from the existing literature, from (ii) network simulators or
from (iii) network monitoring agents.

The next section investigates how cognitive optimization
methods can be used to select an optimal set of network
services in each device. The paper will describe how LSPI [13]
can be applied inside the negotiation entity in order to enable
it to gather knowledge about the influence of each combination
of services (while taking into account the incentives of each
community). Further more, the algorithm provides criteria
to determine what is the optimal service set in the given
circumstances. This information is crucial for the community
to be able to decide whether or not to engage into cooperation
with other communities.

IV. LEAST SQUARE POLICY ITERATION - LSPI

Next section will describe the concept of LSPI, which is a
form of reinforcement learning [14].

A. Reinforcement learning concept

Reinforcement learning is a branch of artificial intelli-
gence that enables learning agents (devices) to define and
improve decision making rules (policies) based on experi-
ence and rewards they receive after each taken decision.
While learning, agents go through a certain number of states
(S = s1, s2, ..., sm). There is an available set of actions
(A = a1, a2, ...an) that can be chosen from at each state.
Taking an action will result in transition to a different state
with a given probability. The expression P (s′|s, a) represents
the conditional probability of entering a state s′ after the action
a is taken in the state s. After each transition, an immediate
reward is given R(s, a, s′). The reward is either pre-defined
by a user or it is calculated as a function of a certain network
properties (such as remaining battery level of an agent).

The main goal of a decision making agent is to maximize
what is called a state-action function, also referred to as Q-
function. Its formal outlook is know as the Bellman’s equation:

Q(s, a) = r(s, a) + γ
∑
s′ P (s′|s, a)maxQ(s′, a′) (1)

The first term on the right side represents the expected
immediate reward of executing action a at state s. It is
calculated as r(s, a) =

∑
P (s′|s, a)R(s, a, s′), while the

second term is the maximum expected future reward. Factor γ
is known as the discount factor and its purpose is to model the
fact that a immediate reward is more valuable than a future
reward.

The main concept is clear: an agent updates Q-values of
each state/action pair once it switches from state s to s′,
upon utilizing action a. At each state it uses the same criteria
to choose the best possible action - it picks up the one
which has the highest Q-value. That way, certain decisions
will be enforced. Of course, in the initial phase, right after
deployment, all Q values will be the equal. In order to prevent
enforcing certain decision making patterns that might not be
optimal, an ε greedy algorithm is used. It simply states that in
each state, agent will pick a random action with ε probability.
On the other hand, with 1 - ε probability it will pick an action
with the highest Q-value.

B. LSPI fundamentals

LSPI approach approximates Q-values with a linear para-
metric combination of k basis functions, also referred to as
features:

Q(s, a;w) =
∑
k φj(s, a)ωj (2)

Argument ωj is the weight parameter. Basis functions are
arbitrary and generally non-linear functions of s and a. A few
good examples are: the residual energy of a node, the number
of routing paths through a node, hop distance from a sink
etc. The set of basis functions strongly depend on the network
objectives. In any case, it is important to make them linearly
independent to ensure that there are no redundant parame-
ters. Generally, the number of basis functions is significantly
smaller than the number of state/action pairs.

This is what Bellman equation transforms into after we
combine (1) and (2):

Φω = R+ γPπΦω (3)

Φ is the matrix that represents the set of k basis functions for
each state/action pair. Under the assumption that the columns
of Φ are linearly independent, the equation transforms into the
following equation:

ΦT (Φ− γPπΦ)ωπ = ΦTR (4)

The weights ω of the linear functions Q(s, a) can be
extracted by solving a linear system:

ω = A−1b
where: A = ΦT (Φ− γPπΦ)

b = ΦTR

(5)

Both A and b matrices are populated by collecting samples
(s, a, s′, r) from the environment. The parameters s, a, s′

and r are the current state, action, new state and immediate
reward, respectively. Using L number of samples, we can
construct an approximate version of Φ̂, P̂π and R̂ as follows:

Φ̂ =

 φ(s1, a1)T

...
φ(sn, an)T

 P̂πΦ =

 φ(s′1, π(s′))T

...
φ(s′n, π(s′))T

R̂ =

 r1
...
r2

Dimensions of the Φ,Pπ and R matrices are (|S||A| × k),
|S||A| × |S||A| and |S||A| × 1, respectively.

An important reason to use LSPI, rather than other rein-
forcement learning approaches, lies in a fact that it converges
faster than all other known algorithms [13], since the samples
are used more efficiently. In addition LSPI does not require
fine tuning of the initial parameters such as learning rate.
Finally, LSPI learns the weights of the linear functions and
updates Q-values based on the most updated information
regarding the features, while in other approaches agents make
decisions directly based on Q-values, which may be outdated,
depending on the network dynamics.

V. LSPI AS A PART OF THE NEGOTIATION ENTITY

Before a network can decide whether or not cooperation
with a co-located network will be beneficial, it needs to
be aware of the effects its decisions will have on its own
performance. As such, the first step in the process of creating
a strong and efficient symbiotic cooperation is for the network
to become aware of its own optimal settings and performance.
To this end, each network contains a single centralized nego-
tiation node (Fig. III) that collects the network performance
information and executes the self-learning LSPI solution to
determine the influence of each possible network state.

First, a methodology is given that describes how LSPI
can be applied to realize the negotiation engine. Afterwards,
the methodology is illustrated with an example realization in
Section V-C.

A. Defining states

Since every community is capable of providing a pre-
defined number of services, a combination of active/inactive
services at any particular moment represent the state the whole
community is in (Fig. 3). The number of possible states can
be calculated as Nstates = 2Nserv , where Nserv is the cardinal
number of the set of services available in a community.

Fig. 3. Possible combinations of services (learning states) in the case when
network is capable of providing two services, Service 1 and Service 2

The time between two changes of states is called the
episode. During each episode, nodes in the community gather
different statistics regarding network performance. These
statistics are utilized in a raw format or as arguments to
calculate the metrics used inside the basis functions. Incentives
that are active determine what metrics are needed and what
properties (features) are used as basis functions. At the end of
each episode, basis function values get updated according the
data that has been gathered from the network. Using (2), the
Q-values of transitions from each state to the current one are
updated (Fig. 4).

Fig. 4. Possible transitions between states and their Q-values. Values in bold
red are updated an episode in which system was in state S3

This is legitimate because the properties of the network
that are described by the basis functions depend only on the
destination state and not the source state. This allows us to
update Nstates number of Q-values after each episode. This
number includes the case when system decides not to change
the state, but to stay in the same one. With this updating rule,
it will take at least Nstates number of episodes to update
Q-values of all the possible transitions. In order to prevent
possibly sub-optimal loops during the initial phase of learning,
an ε greedy algorithm (described in Section VI) is used.

As described in Formula 2, the Q-value of each transition
is a linear combination of basis functions, pondered with
weight factors. These basis functions must be designed in

correspondence with incentives that are active in the network.
Incentives should be presented by at least one function and
each additional basis function will describe one new dimension
of the incentive. However, it is desirable to make basis
functions independent from one another to avoid redundancy.
Weight factors, associated with each function, are used to
favorize certain metrics over the others. In different words,
some changes of the network properties during a learning
episode will have a more significant impact on the reward
that has been given after each episode. Initial values of weight
factor are defined by user in a pre-deployment phase.

B. Calculating rewards

In our case, rewards are calculated based on how close the
actual network performance was to the desired performance
during a particular episode (in regards to all the active network
incentives). Since incentives are high level network goals,
these goals must be determined in a design phase of the
network. They represent the desired performance as a combi-
nation of certain metrics. As such, at the end of each episode
when all the necessary metrics are collected, the system is able
to calculate how close to the desired performance the current
observations are. According to the distance between observed
and desired performance, the appropriate reward is calculated.
An example implementation of the above concepts is given in
Section V-C.

After the basis functions are updated and rewards calculated,
Formula (3) is used to tune up the weight factors. The process
stops if, after any of recalculations, the difference between an
old and a new value doesn’t exceed an ε value, defined by the
user.

The metrics used to calculate the rewards have to be
collected from the network. The best possible case would be
to use the information gathered for the purpose of calculation
the basis function values. In certain cases, the same linear
combination of basis functions, used to update a Q value,
is used to calculate rewards [15]. In the case of LSPI, Q
values should not be confused with rewards. Q values are
pointers system should follow in order to perform in an
optimal way. Rewards, through the process of weight factor
recalculation, will help determine the Q value of a state
more accurately, since the influence of each feature on it
will be precisely determined. Unlike them, rewards are being
calculated depending on a predetermined high level goal of
the network. An actual realization of this concept, given in
the following section, will help clarify this matter.

The total reward Rtotal is calculated as a combination of
rewards given per each incentive:

Rtotal =
∑
i CpiRi (6)

Here, Cpi is the coefficient that defines the priority of an
incentive [5]. In cases when the network has more than one
high level goals, one of them might be favorized depending on
the main purpose of the network. For example, a temperature
monitoring network on a remote location might have a low

delay and long network lifetime incentives. In this case, long
network lifetime would be more appreciated since it would
be to expensive to change the batteries every once in a
while. Somewhat higher delay can be tolerated. In cases
where changing batteries does not represent such a costly task,
priorities of both incentives can be set equal or even in a favor
of a low delay.

C. One possible realization

Let’s consider a case when there is a network similar to
the one described in the previous section. Low delay and long
network lifetime are the main incentives of the network.

Example basis functions used for this case are the average
number of hops per packet (φ1) and the average energy spent
per node (φ2). While the first information can be obtained
directly from a packet’s header (hop counter increased at each
retransmission), the second one has to be collected separately
from each node. One possible way would be to obtain infor-
mation about the average time spent in receiving/transmitting
(ttran, trec) mode from every node and calculate the average
value per node:

¯ttran = 1
N

∑
N ttran ; ¯trec = 1

N

∑
N trec (7)

Argument N is the number of nodes in the network. Since
the power consumption knowing the power radio transceiver
spends in these two modes (stated in a data-sheet) and the
average time spent in transmitting and receiving, we can
calculate the approximate average energy spent per node in the
network. Let ptrans and prec be the transmitting and receiving
power of a radio transceiver, respectively. We get:

Eavg = tavgrecprec + tavgtranptran (8)

If the information about the current battery level is obtained
from each node (a relatively simple task), the average remain-
ing energy per node can be used along with the information
about the average energy spent to predict the network life
time in terms of energy with the given set of services. The
difference between observed value and the desired one will
help us calculate the reward for both incentives. Let’s say
that two incentives have the same priority, thus Rtotal =
C1/2(R1 +R2). Let Egoal be the energy needed for a desired
network lifetime and let Dgoal be the desired delay.

Rlifetime = γ
Tgoal

Tmeasured
Const (9)

Rdelay = γ
Dgoal

Dmeasured
Const (10)

Equations are designed this way so that rewards are in-
versely proportional to obtained evaluation metrics. The re-
ward for the lifetime incentive is inversely proportional to the
energy spent in the network during one episode. In the other
case, reward will be inversely proportional to a delay that is
measured during an episode.

After a certain amount of data is gathered, weight factors
(ωj) are recalculated by solving the system of equations given
in Section IV. Next, the matrices Φ and R are populated as
described in Section IV. There is still one unknown factor left:

the transition probability matrix. In our case, P (s′|s, a) can
either be 1 or 0. In other words, if the system is in state (0,0),
by taking the action “set Service 1 to active”, the system will
transfer to state (0,1) with probability 1. Probability of passing
to any other state is 0. The same rule is applied to every other
combination of states and actions in the same manner.

If some optimizations are mutually exclusive (for example,
channel hopping and network merging with a non-hopping
network) these states will be forbidden. This can easily be
implemented since network managers can disallow certain
services by setting the transition probability to 0.

VI. IMPLEMENTATION GUIDELINES AND FUTURE WORK

This section points-out and discusses some additional im-
plementation challenges. In addition, a number of general
guidelines of how to overcome them are given (although the
optimal approach might be different from use case to use
case). Afterwards, possible extensions to this work towards
its utilization in the service negotiation phase of creating a
symbiotic network are discussed.

A. Implementation guidelines

When introducing LSPI in as described in the previous
sections, two main challenges are immediately evident:

1) How to avoid large overhead when collecting statistics
(basic functions) from the network
2) What is the optimal period between changing from one
state to another (learning episode)

There is no universal and definite answer to either of those
questions. Both issues are case specific and the best solution
to any of them will depend on both the capabilities of the
network and the metrics that are needed to calculate values of
the basis functions and rewards.

In the case described in Section V-C, information regarding
the hop count per each packet can be transmitted towards
the sink as a part of an original data packet. No additional
transmissions are required. However, to obtain data regarding
the energy spent at every node during the episode, additional
messages will be sent in both directions. Negotiation entity
will have to broadcast a request for measurements at the end
of episodes and all the nodes will have to send them as a
reply. One less intrusive solution in sensor networks used to
gather data (where each packet is sent to the central sink) is
to use the already gathered information about the hop count to
calculate the necessary metrics. For example, every hop of a
packet can be modeled as one transmission and one reception.
By combining this knowledge with the size of the packets
used in a network and the bit rate of a radio interface, it is
possible to calculate / estimate how much time is needed for
each transmission. Of course, this way of calculating the above
mentioned metric will introduce certain uncertainty errors, but
it will significantly reduce the overhead.

In regards to determining the optimal duration of the learn-
ing period: two factors should be taken into account:

1) The dynamics of the network

2) The total length of a learning process

In high-throughput and highly dynamic environments,
where network properties change quickly, a large amount of
information can be gathered for a relatively short amount
of time. Learning episodes in these cases should be shorter
because the amount of packets carrying information per time
unit will be higher than in a less dynamic networks. Generally,
it is desirable not to keep the network too long in a state that
is potentially suboptimal (resource consuming). It is safe to
say that the effects of suboptimal performance much quicker
impacts networks with heavy traffic.

It is also possible to use other metrics to define the duration
of a learning episode. For example, the number of received
packets that contain performance statistics can be used instead
of time units. Obviously, the episodes will be of a different
duration, but the amount of collected information from the
network during each episode will remain the same.

Finally, the number of episodes and their duration will
directly define the duration of the entire learning process. In
cases where it is possible to perform an “off-line” learning
(on test beds or using network simulators) using artificially
generated traffic or by recreating operational conditions, time
will not be a factor. However, we must assume that, generally,
this won’t be possible. In those cases, determining the duration
of the learning process will pose a great challenge to a system
designer since the practical value of the reasoning method will
be directly evaluated through it.

In the case we presented in Section V-C, the system can
go through 4 different states. There are 16 possible transition
from state to state, but since 4 Q-values are calculated after
each transition the lowest possible number of episodes, until
all the Q-values are updated is 4. This assumption is valid only
if the system will never go into a state is has previously been
in. No matter how high we set ε (ε greedy algorithm), there
will always be at least ε probability that the engine chooses
state it’s already been in against the unknown one.

B. Further optimizations and future work

The goal of the previously described work was to select
the optimal set of services that should be activated in each
network. But is can reasonably be expected that, as time goes
on, due to the wide variety of wireless network conditions,
network protocols will become increasingly adaptive and con-
figurable. As a result, more and more configurable settings
will be available in the networks.

To cope with this situation, LSPI can also be applied in
another direction: for the optimization of a single network
protocol. The main goal would be to determine the optimal set
of protocol settings. Combination of those settings represent
system states. Large number of settings will lead to a large
number of states, of course. However, the learning process can
be speed up by implementing deduction techniques that enable
the LSPI engine to recognize certain behavioral patterns.
For example, if the reasoning engine notices a performance
weakening trend when the back-of values of a MAC protocol

are increased, a prediction can be made about which transitions
will probably be sub-optimal so that they can be avoided
(by lowering their transition probability). In other words, the
reasoning engine can predict behavioral patterns to reduce the
number of possible states the system has to go through.

It makes sense to extent the LSPI negotiation engine so
that it can be used not only to help discover the optimal set
of network services, but at the same time optimally configure
other network parameters. During the optimization process,
parameters such as radio transmitting power, optimal duty
cycle, communication channel can be investigated. Unfortu-
nately, this approach will increase the number of variables,
leading to an increase of the number of states, number of
state transitions and learning episodes. In other words, the
complexity (and total learning time) will increase dramatically
with each new aspect of network optimization that is taken into
account.

As an alternative, in fully-configurable networks (with mul-
tiple configurable network services and mulitple configurable
protocols), we propose to reduce the optimization complexity
by using a tiered system of network optimizations (see Fig. 5).

1) LSPI can be used to first optimize the parameters of
each network protocol of the network.

2) Next, LSPI is used to identify a number of service sets
that offer acceptable network performance.

3) Finally, LSPI selects amongst the acceptable service sets
those that are also beneficial for co-located networks.

Fig. 5. Scalability of the LSPI algorithm - a) optimization of a single
network protocol by tuning up its settings b) optimization of a homogeneous
network through defining an optimal set of services that needs to be activated
c) optimization of a symbiotic (heterogeneous) network through the process
of service set negotiation

Step 1 of this process, optimization of a single network
protocol, was described already above. During step 2 of
this process, each participating network will be given an
opportunity to check how certain number of different service
sets (optimal one and a number of sub-optimal) activated in
a co-located subnet, affect its own performance. To speed up
the learning process, deductions about the influence of certain
services can also be made so that a number of states can

more quickly be reduced. Finally, during step 3 every network
calculates the combined influence of the self-utilized set and
the one used in a co-located network. This will, eventually,
lead to either a cooperation agreement or a decision not to
engage into any cooperation if the networks estimate that
neither of them will benefit from it.

Our future work will integrate the above described solution
with the existing SymbioNets solutions [12] (that already
include network discovery) to determine the optimal service
sets, activated in each sub-community, of a large symbiotic
network (Fig. 6).

Fig. 6. Two co-located networks eligible for cooperation. Discovery nodes
(DE) will be used for mutual detection, after which negotiation engines (NE)
will start the reasoning/negotiating process, based on each network optimal
and sub-optimal states.

VII. CONCLUSION

Due to the ever increasing number of wireless networks,
independent co-located networks increasingly influence each
other, resulting in degraded network performance. As a result,
network optimization solutions can no longer afford to look
only at the performance of a single network. Optimizing
multiple co-located networks, each with a variable number of
network functionalities that influence each other, is a complex
problem that has not yet received a lot of attention in the
research community. In this paper, we propose to use LPI (a
form of reinforcement learning) for the selection and composi-
tion of high-level networking optimizations in heterogeneous
networks. Our approach is beyond the state-of-the-art from
Section II in the sense that cognitive networking normally
focuses on single-layer parameter optimization, rather than
taking the global optimum into account.

The paper presents the mathematical background needed
for this optimization process and discusses the difficulties and
challenges for implementing these solutions. Our solution adds
the LSPI mechanism to the negotiation engine of the existing
SymbioNets project. Networks can cooperate with each other
by activating network services (such as interference avoidance,
shared routing, aggregation, etc.) that influence one or more
networks.

In a first phase, our algorithm optimizes the performance
of each single network (based on its network requirements)
to obtain the baseline optimal network performance of the
network without cooperation. During this process, we obtain
several sets of services and service compositions that result
in improved performance. Once networks know their optimal
(as well as their sub-optimal) operating configurations, each
participating network engages into a process of service nego-
tiation with other networks, all the while taking into account
a firm policy regarding the acceptable and non-acceptable
performance. The paper concludes with a number of optimiza-
tions that result in faster exploration of the parameter space
and a decrease of the learning cycle, thus resulting in faster
optimization of the network.

We strongly believe that the problem of interfering co-
located networks will only increase. As such, innovative cross-
layer and cross-network solutions that take these interactions
into account, like the one proposed in this paper, will be of
great importance to the successful development of efficient
next-generation networks in heterogeneous environments.

ACKNOWLEDGMENT

This research is funded by the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT-
Vlaanderen) through the IWT SymbioNets project, by the
Interdisciplinary Institute for Broadband Technology through
the QoCON project and by the FWO-Flanders through a FWO
post-doctoral research grant for Eli De Poorter

REFERENCES

[1] Mitola, J., III; Maguire, G.Q., Jr., “Cognitive radio: making software
radios more personal”, Personal Communications, IEEE , vol.6, no.4,
pp.13-18, Aug 1999

[2] Razvan Musaloiu E. and Andreas Terzis. “Minimising the effect of WiFi
interference in 802.15.4 wireless sensor networks.” Int. J. Sen. Netw. 3,
1 (December 2008), 43-54.

[3] I. Akyildiz, W. Lee, M. Vuran, S. Mohanty, “NeXt Generation/Dynamic
Spectrum Access/Cognitive Radio Wireless Networks: A Survey”, Else-
vier Computer Networks, Vol 50, pp. 2127-2159, 2006.

[4] C. Fortuna, M. Mohorcic, “Trends in the development of communication
networks: Cognitive networks”, Computer Networks, 2009.

[5] E. De Poorter, B. Latre, I. Moerman and P. Demeester, “Symbiotic net-
works: Towards a new level of cooperation between wireless networks”,
Published in Special Issue of the Wireless Personal Communications
Journal, Springer Netherlands, 45(4):479-495, June 2008

[6] Wakamiya, N.; Arakawa, S.; Murata, M.,“Self-Organization Based Net-
work Architecture for New Generation Networks”, 2009 First Interna-
tional Conference on Emerging Network Intelligence, pp.61-68, 11-16
Oct. 2009

[7] R. W. Thomas, L. A. DaSilva and A. B. MacKenzie, “Cognitive net-
works”, Proc. IEEE DySPAN 2005, pp.352-60

[8] Jiahua Wu, “A Survey of Game Theory in Wireless Networking Design”
[9] T. G. Dietterich, and O. Langley, (2007) “Machine Learning for Cognitive

Networks:Technology Assessment and Research Challenges in Cognitive
Networks: Towards Self Aware Networks”, John Wiley and Sons, Ltd,
Chichester,UK. doi: 10.1002/9780470515143.ch5

[10] A. Forster, “Machine Learning Techniques Applied to Wireless Ad-Hoc
Networks: Guide and Survey”, 3rd International Conference on Intelli-
gent Sensors Sensor Networks and Information (ISSNIP), Melbourne,
Australia, 3-6 Dec. 2007.

[11] M. Rovcanin, E. de Poorter, O. Yaron, I. Moerman, D. Plets, W. Joseph,
L. Martens “Elaboration of Cognitive Decision Making Methods in the
Context of Symbiotic Networking”, SENSORCOMM 2012, August 19 -
24, 2012 - Rome, Italy

[12] E. De Poorter, P. Becue, M. Rovcanin, I. Moerman and P. Demeester, “A
negotiation-based networking methodology to enable cooperation across
heterogeneous co-located networks”, Ad Hoc Networks, Available online
8 December 2011, ISSN 1570-8705, 10.1016/j.adhoc.2011.11.007.

[13] M. Lagoudakis and R. Parr. “Model-free least-squares policy iteration”.
In Proc. of NIPS, 2001.

[14] L. P. Kaelblign, M. L. Littman, A. W.Moore,“Reinforcement learning:
A Survey”, Journal of Artificial Intelligence Research 4 (1996) 237-285

[15] P. Wang, T. Wang, “Adaptive Routing for Sensor Networks using Rein-
forcement Learning”, CIT ’06 Proceedings of the Sixth IEEE International
Conference on Computer and Information Technology, October 22-25,
2006 Charlotte Convention Center Charlotte, NC

