20 research outputs found

    Mental Structures

    Get PDF
    An ongoing philosophical discussion concerns how various types of mental states fall within broad representational genera—for example, whether perceptual states are “iconic” or “sentential,” “analog” or “digital,” and so on. Here, I examine the grounds for making much more specific claims about how mental states are structured from constituent parts. For example, the state I am in when I perceive the shape of a mountain ridge may have as constituent parts my representations of the shapes of each peak and saddle of the ridge. More specific structural claims of this sort are a guide to how mental states fall within broader representational kinds. Moreover, these claims have significant implications of their own about semantic, functional, and epistemic features of our mental lives. But what are the conditions on a mental state's having one type of constituent structure rather than another? Drawing on explanatory strategies in vision science, I argue that, other things being equal, the constituent structure of a mental state determines what I call its distributional properties—namely, how mental states of that type can, cannot, or must co‐occur with other mental states in a given system. Distributional properties depend critically on and are informative about the underlying structures of mental states, they abstract in important ways from aspects of how mental states are processed, and they can yield significant insights into the variegation of psychological capacities

    A novel shape descriptor based on salient keypoints detection for binary image matching and retrieval

    Get PDF
    We introduce a shape descriptor that extracts keypoints from binary images and automatically detects the salient ones among them. The proposed descriptor operates as follows: First, the contours of the image are detected and an image transformation is used to generate background information. Next, pixels of the transformed image that have specific characteristics in their local areas are used to extract keypoints. Afterwards, the most salient keypoints are automatically detected by filtering out redundant and sensitive ones. Finally, a feature vector is calculated for each keypoint by using the distribution of contour points in its local area. The proposed descriptor is evaluated using public datasets of silhouette images, handwritten math expressions, hand-drawn diagram sketches, and noisy scanned logos. Experimental results show that the proposed descriptor compares strongly against state of the art methods, and that it is reliable when applied on challenging images such as fluctuated handwriting and noisy scanned images. Furthermore, we integrate our descripto

    Encoding of Complexity, Shape, and Curvature by Macaque Infero-Temporal Neurons

    Get PDF
    We recorded responses of macaque infero-temporal (IT) neurons to a stimulus set of Fourier boundary descriptor shapes wherein complexity, general shape, and curvature were systematically varied. We analyzed the response patterns of the neurons to the different stimuli using multidimensional scaling. The resulting neural shape space differed in important ways from the physical, image-based shape space. We found a particular sensitivity for the presence of curved versus straight contours that existed only for the simple but not for the medium and highly complex shapes. Also, IT neurons could linearly separate the simple and the complex shapes within a low-dimensional neural shape space, but no distinction was found between the medium and high levels of complexity. None of these effects could be derived from physical image metrics, either directly or by comparing the neural data with similarities yielded by two models of low-level visual processing (one using wavelet-based filters and one that models position and size invariant object selectivity through four hierarchically organized neural layers). This study highlights the relevance of complexity to IT neural encoding, both as a neurally independently represented shape property and through its influence on curvature detection

    A survey of visual preprocessing and shape representation techniques

    Get PDF
    Many recent theories and methods proposed for visual preprocessing and shape representation are summarized. The survey brings together research from the fields of biology, psychology, computer science, electrical engineering, and most recently, neural networks. It was motivated by the need to preprocess images for a sparse distributed memory (SDM), but the techniques presented may also prove useful for applying other associative memories to visual pattern recognition. The material of this survey is divided into three sections: an overview of biological visual processing; methods of preprocessing (extracting parts of shape, texture, motion, and depth); and shape representation and recognition (form invariance, primitives and structural descriptions, and theories of attention)

    Point-based medialness for 2D shape description and identification

    Get PDF
    Abstract We propose a perception-based medial point description of a natural form (2D: static or in articulated movement) as a framework for a shape representation which can then be efficiently used in biological species identification and matching tasks. Medialness is defined by adapting and refining a definition first proposed in the cognitive science literature when studying the visual attention of human subjects presented with articulated biological 2D forms in movement, such as horses, dogs and humans (walking, running). In particular, special loci of high medialness for the interior of a form in movement, referred to as “hot spots”, prove most attractive to the human perceptual system. We propose an algorithmic process to identify such hot spots. In this article we distinguish exterior from interior shape representation. We further augment hot spots with extremities of medialness ridges identifying significant concavities (from outside) and convexities (from inside). Our representation is strongly footed in results from cognitive psychology, but also inspired by know-how in art and animation, and the algorithmic part is influenced by techniques from more traditional computer vision. A robust shape matching algorithm is designed that finds the most relevant targets from a database of templates by comparing feature points in a scale, rotation and translation invariant way. The performance of our method has been tested on several databases. The robustness of the algorithm is further tested by perturbing the data-set at different levels

    Compositionality in Perception: A Framework

    Get PDF
    Perception involves the processing of content or information about the world. In what form is this content represented? I argue that perception is widely compositional. The perceptual system represents many stimulus features (including shape, orientation, and motion) in terms of combinations of other features (such as shape parts, slant and tilt, common and residual motion vectors). But compositionality can take a variety of forms. The ways in which perceptual representations compose are markedly different from the ways in which sentences or thoughts are thought to be composed. I suggest that the thesis that perception is compositional is not itself a concrete hypothesis with specific predictions; rather it affords a productive framework for developing and evaluating specific empirical hypotheses about the form and content of perceptual representations. The question is not just whether perception is compositional, but how. Answering this latter question can provide fundamental insights into perception

    Modal matching for correspondence and recognition

    Full text link

    Medialness and the Perception of Visual Art

    Get PDF
    In this article we explore the practical use of medialness informed by perception studies as a representation and processing layer for describing a class of works of visual art. Our focus is towards the description of 2D objects in visual art, such as found in drawings, paintings, calligraphy, graffiti writing, where approximate boundaries or lines delimit regions associated to recognizable objects or their constitutive parts. We motivate this exploration on the one hand by considering how ideas emerging from the visual arts, cartoon animation and general drawing practice point towards the likely importance of medialness in guiding the interaction of the traditionally trained artist with the artifact. On the other hand, we also consider recent studies and results in cognitive science which point in similar directions in emphasizing the likely importance of medialness, an extension of the abstract mathematical representation known as ‘medial axis’ or ‘Voronoi graphs’, as a core feature used by humans in perceiving shapes in static or dynamic scenarios.We illustrate the use of medialness in computations performed with finished artworks as well as artworks in the process of being created, modified, or evolved through iterations. Such computations may be used to guide an artificial arm in duplicating the human creative performance or used to study in greater depth the finished artworks. Our implementations represent a prototyping of such applications of computing to art analysis and creation and remain exploratory. Our method also provides a possible framework to compare similar artworks or to study iterations in the process of producing a final preferred depiction, as selected by the artist
    corecore