18 research outputs found

    Slot error rate performance of DH-PIM with symbol retransmission for optical wireless links

    Get PDF
    In this paper we introduce the dual-header pulse interval modulation (DH-PIM) technique employing a simple retransmission coupled with a majority decision detection scheme at the receiver. We analytically investigate the slot error rate (SER) performance and compare results with simulated data for the symbol retransmissions rates of three, four and five, showing a good agreement. We demonstrate that the proposed scheme significantly reduces the SER compared with the standard single symbol transmission system, with retransmission rate of five offering the highest code gain of 5 dB

    Convolutional coded dual header pulse interval modulation for line of sight photonic wireless links.

    Get PDF
    The analysis and simulation for convolutional coded dual header pulse interval modulation (CC-DH-PIM) scheme using a rate ½ convolutional code with the constraint length of 3 is presented. Decoding is implemented using the Viterbi algorithm with a hard decision. Mathematical analysis for the slot error rate (SER) upper bounds is presented and results are compared with the simulated data for a number of different modulation techniques. The authors show that the coded DH-PIM outperforms the pulse position modulation (PPM) scheme and offers >4 dB code gain at the SER of 10?4 compared to the standard DH-PIM. Results presented show that the CC-DH-PIM with a higher constraint length of 7 offers a code gain of 2 dB at SER of 10?5 compared to the CC-DH-PIM with a constraint length of 3. However, in CC-DH-PIM the improvement in the error performance is achieved at the cost of reduced transmission throughput compared to the standard DH-PIM

    Wavelet—Artificial Neural Network Receiver for Indoor Optical Wireless Communications

    Get PDF
    The multipath induced intersymbol interference (ISI) and fluorescent light interference (FLI) are the two most important system impairments that affect the performance of indoor optical wireless communication (OWC) systems. The presence of either incurs a high optical power penalty (OPP) and hence the interferences should be mitigated with suitable techniques to ensure optimum system performance. The discrete wavelet transform (DWT) and the artificial neural network (ANN) based receiver to mitigate the effect of FLI and ISI has been proposed in the previous study for the one-off keying (OOK) modulation scheme. It offers performance improvement compared to the traditional methods of employing a high pass filter (HPF) and a finite impulse response (FIR) equalizer. In this paper, the investigation of the DWT-ANN based receiver for baseband modulation techniques including OOK, pulse position modulation (PPM) and digital pulse interval modulation (DPIM) are reported. The proposed system is implemented using digital signal processing (DSP) board and results are verified by comparison with simulation data

    Wavelet transform - artificial neural network receiver with adaptive equalisation for a diffuse indoor optical wireless OOK link

    Get PDF
    This paper presents an alternative approach for signal detection and equalization using the continuous wavelet transform (CWT) and the artificial neural network (ANN) in diffuse indoor optical wireless links (OWL). The wavelet analysis is used for signal preprocessing (feature extraction) and the ANN for signal detection. Traditional receiver architectures based on matched filter (MF) experience significant performance degradation in the presence of artificial light interference (ALI) and multipath induced intersymbol interference (ISI). The proposed receiver structure reduces the effect of ALI and ISI by selecting a particular scale of CWT that corresponds to the desired signal and classifying the signal into binary 1 and 0 based on an observation vector. By selecting particular scales corresponding to the signal, the effect of ALI is reduced. We show that there is little variation when using 30 and 5 neurons in the first layer, with one layer ANN model showing a consistently worse BER performance than other models, whilst the 15 neuron model show some behaviour anomalies from a BER of approximately 10-3. The simulation results show that the Wavelet-ANN architecture outperforms the traditional MF based receiver even with the filter is matched to the ISI affected pulse shape. The Wavelet-ANN receiver is also capable of providing a bit error rate (BER) performance comparable to the equalized forms of traditional receiver structure

    Bit error performance of diffuse indoor optical wireless channel pulse position modulation system employing artificial neural networks for channel equalisation

    Get PDF
    The bit-error rate (BER) performance of a pulse position modulation (PPM) scheme for non-line-of-sight indoor optical links employing channel equalisation based on the artificial neural network (ANN) is reported. Channel equalisation is achieved by training a multilayer perceptrons ANN. A comparative study of the unequalised `soft' decision decoding and the `hard' decision decoding along with the neural equalised `soft' decision decoding is presented for different bit resolutions for optical channels with different delay spread. We show that the unequalised `hard' decision decoding performs the worst for all values of normalised delayed spread, becoming impractical beyond a normalised delayed spread of 0.6. However, `soft' decision decoding with/without equalisation displays relatively improved performance for all values of the delay spread. The study shows that for a highly diffuse channel, the signal-to-noise ratio requirement to achieve a BER of 10−5 for the ANN-based equaliser is ~10 dB lower compared with the unequalised `soft' decoding for 16-PPM at a data rate of 155 Mbps. Our results indicate that for all range of delay spread, neural network equalisation is an effective tool of mitigating the inter-symbol interference

    Reducing the effects of intersymbol interference in diffuse DPIM optical wireless systems

    Get PDF
    The paper investigates the performance of digital pulse interval modulation (DPIM) in the presence of multipath propagation and additive white Gaussian noise. To combat intersymbol interference (ISI), guard slots and a nonlinear equaliser have been introduced. The average optical power requirements (AOPR) due to ISI for cases with/without guard slots and with equaliser are analysed using a ceilingbounce model. Results obtained show that in the absence of equalisation, DPIM without guard slot offers a lower AOPR compared with on–off keying (OOK). Introducing guard slots gives a further reduction in AOPR by up to 4 dB due to the reduced duty cycle of the DPIM signal. The performance of DPIM without guard slot but using an equaliser is found to be significantly better than DPIM with guard slots on a channel with severe ISI

    Adaptive receiver for visible light communication system

    Get PDF
    The future of visible light communication (VLC) systems relies on achieving moderate to high data rates and the ability to design a low complexity system, as these will play a major role in the next generation communication networks. In this paper, we propose, design, and evaluate the use of an adaptive receiver to mitigate the inter-symbol interference (ISI) and improve the overall VLC system performance while using a single element wide field of view (FOV) photodetector. In addition, we optimise the adaptive receiver by employing a different number of buffers to find the optimum configurations in terms of reducing the complexity and achieving the best performance. The proposed adaptive receiver is able to provide data rates of 1 Gbps with a BER of 10¯⁾ for OOK modulation in the worst case scenario

    Hybrid pulse interval modulation-code-division multiple-access for optical wireless communications.

    Get PDF
    The work in this thesis investigates the properties of the IR diffuse wireless link with regard to: the use of sets of signature sequences with good message separation properties (hence providing low BER), the suitability of a hPIM-CDMA scheme for the IR diffuse wireless systems under the constraint of eye safety regulations (i.e. when all users are transmitting simultaneously), the quality of message separation due to multipath propagation. The suitability of current DS-CDMA systems using other modulation techniques are also investigated and compared with hPIM-CDMA for the performances in power efficiency, data throughput enhancement and error rate.A new algorithm has also been proposed for generating large sets of (n,3,1,1)OOC practically with reduced computation time. The algorithm introduces five conditions that are well refined and help in speeding up the code construction process. Results for elapsed computation times for constructing the codes using the proposed algorithm are compared with theory and show a significant achievement. The models for hPIM-CDMA and hPPM-CDMA systems, which were based on passive devices only, were also studied. The technique used in hPIM-CDMA, which uses a variable and shorter symbol duration, to achieve higher data throughput is presented in detail. An in-depth analysis of the BER performance was presented and results obtained show that a lower BER and higher data throughput can be achieved. A corrected BER expression for the hPPM-CDMA was presented and the justification for this detailed. The analyses also show that for DS-CDMA systems using certain sets of signature sequences, the BER performance cannot be approximated by a Gaussian function
    corecore