24,638 research outputs found

    Format-independent media delivery, applied to RTP, MP4, and Ogg

    Get PDF
    The current multimedia landscape is characterized by a significant heterogeneity in terms of coding and delivery formats, usage environments, and user preferences. This paper introduces a transparent multimedia content adaptation and delivery approach, i.e., model-driven content adaptation and delivery. It is based on a model that takes into account the structural metadata, semantic metadata, and scalability information of media bitstreams. Further, a format-independent multimedia packaging method is proposed based on this model for media bitstreams and MPEG-B BSDL. Thus, multimedia packaging is obtained by encapsulating the selected and adapted structural metadata within a specific delivery format. This packaging process is implemented using XML transformation filters and MPEG-B BSDL. To illustrate this format-independent packaging technique, we apply it to three packaging formats: RTP, MP4, and Ogg

    Format-independent and metadata-driven media resource adaptation using semantic web technologies

    Get PDF
    Adaptation of media resources is an emerging field due to the growing amount of multimedia content on the one hand and an increasing diversity in usage environments on the other hand. Furthermore, to deal with a plethora of coding and metadata formats, format-independent adaptation systems are important. In this paper, we present a new format-independent adaptation system. The proposed adaptation system relies on a model that takes into account the structural metadata, semantic metadata, and scalability information of media bitstreams. The model is implemented using the web ontology language. Existing coding formats are mapped to the structural part of the model, while existing metadata standards can be linked to the semantic part of the model. Our new adaptation technique, which is called RDF-driven content adaptation, is based on executing SPARQL Protocol and RDF Query Language queries over instances of the model for media bitstreams. Using different criteria, RDF-driven content adaptation is compared to other adaptation techniques. Next to real-time execution times, RDF-driven content adaptation provides a high abstraction level for the definition of adaptations and allows a seamless integration with existing semantic metadata standards

    Semantic media decision taking using N3Logic

    Get PDF

    XML-driven exploitation of combined scalability in scalable H.264/AVC bitstreams

    Get PDF
    The heterogeneity in the contemporary multimedia environments requires a format-agnostic adaptation framework for the consumption of digital video content. Scalable bitstreams can be used in order to satisfy as many circumstances as possible. In this paper, the scalable extension on the H.264/AVC specification is used to obtain the parent bitstreams. The adaptation along the combined scalability axis of the bitstreams is done in a format-independent manner. Therefore, an abstraction layer of the bitstream is needed. In this paper, XML descriptions are used representing the high-level structure of the bitstreams by relying on the MPEG-21 Bitstream Syntax Description Language standard. The exploitation of the combined scalability is executed in the XML domain by implementing the adaptation process in a Streaming Transformation for XML (STX) stylesheet. The algorithm used in the transformation of the XML description is discussed in detail in this paper. From the performance measurements, one can conclude that the STX transformation in the XML domain and the generation of the corresponding adapted bitstream can be realized in real time

    3D video coding and transmission

    Get PDF
    The capture, transmission, and display of 3D content has gained a lot of attention in the last few years. 3D multimedia content is no longer con fined to cinema theatres but is being transmitted using stereoscopic video over satellite, shared on Blu-RayTMdisks, or sent over Internet technologies. Stereoscopic displays are needed at the receiving end and the viewer needs to wear special glasses to present the two versions of the video to the human vision system that then generates the 3D illusion. To be more e ffective and improve the immersive experience, more views are acquired from a larger number of cameras and presented on di fferent displays, such as autostereoscopic and light field displays. These multiple views, combined with depth data, also allow enhanced user experiences and new forms of interaction with the 3D content from virtual viewpoints. This type of audiovisual information is represented by a huge amount of data that needs to be compressed and transmitted over bandwidth-limited channels. Part of the COST Action IC1105 \3D Content Creation, Coding and Transmission over Future Media Networks" (3DConTourNet) focuses on this research challenge.peer-reviewe
    • …
    corecore