163 research outputs found

    Quantitative Stability of Linear Infinite Inequality Systems under Block Perturbations with Applications to Convex Systems

    Get PDF
    The original motivation for this paper was to provide an efficient quantitative analysis of convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional (resp. finite-dimensional) Banach spaces and that are indexed by an arbitrary fixed set JJ. Parameter perturbations on the right-hand side of the inequalities are required to be merely bounded, and thus the natural parameter space is l(J)l_{\infty}(J). Our basic strategy consists of linearizing the parameterized convex system via splitting convex inequalities into linear ones by using the Fenchel-Legendre conjugate. This approach yields that arbitrary bounded right-hand side perturbations of the convex system turn on constant-by-blocks perturbations in the linearized system. Based on advanced variational analysis, we derive a precise formula for computing the exact Lipschitzian bound of the feasible solution map of block-perturbed linear systems, which involves only the system's data, and then show that this exact bound agrees with the coderivative norm of the aforementioned mapping. In this way we extend to the convex setting the results of [3] developed for arbitrary perturbations with no block structure in the linear framework under the boundedness assumption on the system's coefficients. The latter boundedness assumption is removed in this paper when the decision space is reflexive. The last section provides the aimed application to the convex case

    Second-order subdifferential calculus with applications to tilt stability in optimization

    Get PDF
    The paper concerns the second-order generalized differentiation theory of variational analysis and new applications of this theory to some problems of constrained optimization in finitedimensional spaces. The main attention is paid to the so-called (full and partial) second-order subdifferentials of extended-real-valued functions, which are dual-type constructions generated by coderivatives of frst-order subdifferential mappings. We develop an extended second-order subdifferential calculus and analyze the basic second-order qualification condition ensuring the fulfillment of the principal secondorder chain rule for strongly and fully amenable compositions. The calculus results obtained in this way and computing the second-order subdifferentials for piecewise linear-quadratic functions and their major specifications are applied then to the study of tilt stability of local minimizers for important classes of problems in constrained optimization that include, in particular, problems of nonlinear programming and certain classes of extended nonlinear programs described in composite terms

    Quantitative Stability and Optimality Conditions in Convex Semi-Infinite and Infinite Programming

    Get PDF
    This paper concerns parameterized convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional Banach (resp. finite-dimensional) spaces and that are indexed by an arbitrary fixed set T . Parameter perturbations on the right-hand side of the inequalities are measurable and bounded, and thus the natural parameter space is l(T)l_{\infty}(T). Based on advanced variational analysis, we derive a precise formula for computing the exact Lipschitzian bound of the feasible solution map, which involves only the system data, and then show that this exact bound agrees with the coderivative norm of the aforementioned mapping. On one hand, in this way we extend to the convex setting the results of [4] developed in the linear framework under the boundedness assumption on the system coefficients. On the other hand, in the case when the decision space is reflexive, we succeed to remove this boundedness assumption in the general convex case, establishing therefore results new even for linear infinite and semi-infinite systems. The last part of the paper provides verifiable necessary optimality conditions for infinite and semi-infinite programs with convex inequality constraints and general nonsmooth and nonconvex objectives. In this way we extend the corresponding results of [5] obtained for programs with linear infinite inequality constraints

    Projectional Coderivatives and Calculus Rules

    Full text link
    This paper is devoted to the study of a newly introduced tool, projectional coderivatives and the corresponding calculus rules in finite dimensions. We show that when the restricted set has some nice properties, more specifically, is a smooth manifold, the projectional coderivative can be refined as a fixed-point expression. We will also improve the generalized Mordukhovich criterion to give a complete characterization of the relative Lipschitz-like property under such a setting. Chain rules and sum rules are obtained to facilitate the application of the tool to a wider range of problems

    Variational Stability and Marginal Functions via Generalized Differentiation

    Get PDF
    Robust Lipschitzian properties of set-valued mappings and marginal functions play a crucial role in many aspects of variational analysis and its applications, especially for issues related to variational stability and optimizatiou. We develop an approach to variational stability based on generalized differentiation. The principal achievements of this paper include new results on coderivative calculus for set-valued mappings and singular subdifferentials of marginal functions in infinite dimensions with their extended applications to Lipschitzian stability. In this way we derive efficient conditions ensuring the preservation of Lipschitzian and related properties for set-valued mappings under various operations, with the exact bound/modulus estimates, as well as new sufficient conditions for the Lipschitz continuity of marginal functions

    Generalized Differentiation of Parameter-Dependent Sets and Mappings

    Get PDF
    The paper concerns new aspects of generalized differentiation theory that plays a crucial role in many areas of modern variational analysis, optimization, and their applications. In contrast to the majority of previous developments, we focus here on generalized differentiation of parameter-dependent objects (sets, set-valued mappings, and nonsmooth functions), which naturally appear, e.g., in parametric optimization and related topics. The basic generalized differential constructions needed in this case are different for those known in parameter-independent settings, while they still enjoy comprehensive calculus rules developed in this paper
    corecore