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Robust Lipschitzian properties of set-valued mappings and marginal functions play a crucial role in 
many aspects of variati01~al analysis and its applications, especially for issues related to variational 
stability and optimizatiou. \Ve develop an approach to variational stability based on generalized 
differentiation. The principal achievements of this paper include new results on coderivative calcu
lus for set-valued mappings and singular subdifferentials of marginal functions in infinite dimensions 
with their extended applications to Lipschitz.ian stability. In this way we derive efficient conditions 
ensuring the preservation of Lipschitzian and related properties for set-valued mappings under var
ious operations, with the exact bound/modulus estimates, as well as new sufficient conditions for 
the· Lipschitz continuity of marginal functions. 

Key words: optimization and variational, ro,bust stability and sensitivity, marginal and value func

tions, generalized differentiatiou 
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1 Introduction 

Variational analysis has been well recognized as a fruitful area in applied mathematics dea.l

ing, first of all, with optimization-related issues while also applying variational principle~ 

and approaches to a large spectrum of problems. \\'hich may not be of a variational nature~. 

We refer the reader to the books by Rockafellar and Wets [30], Borwein and Zhu [3], and 

Mordukhovich [18] for the key developments on basic theory of variational analysis ancl its 

numerous applications including those to various topics in operations research. Since nons

mouth functions, sets with nonsmooth boundaries, and set-valued mappings naturally and 

frequently arise in optimization-related problems and variational techniques, the qualitative 

and quantitative aspects of generalized differentiation lie at the very heart of variational 

analysis and its applications. 

This paper mainly concerns developing a generalized differential approach to variational 

stability, which is understood here from the viewpoint of robust Lipschitzian behavior of 

set-valued mappings and marginal functions preserved under perturbations of the initial 

data. Indeed, such a robust Lipschitzian stability plays a crucial role in many aspects of 

variational analysis and optimization, especially those related to sensitivity of feasible and 

optimal solution sets under parameter perturbations; see the afore-mentioned books and 
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also the ones by Bonnans and Shapiro [2] and by Facchinei and Pang [6] with the extended 
bibliographies therein. 

The main single tool of our analysis is the construction of coderivative (adjoint deriva

tive) for set-valued mappings introduced by Mordukhovich [13] and then developed and 

applied in many publications; see, e.g., Borwein and Zhu [3], Dontchev, Lewis and Rock

afellar [5], Ioffe [7], Ioffe and Penot [8], Jourani and Thibault [9, 10], Levy and Mordukhovich 

[11], Mordukhovich [1~. 15. 16, 17, 18], Mordukhovich and Shao [21, 22, 23], Outrata [25], 
Penot [26], Rockafellar and Wets [30], Thibault [32], Treiman [33], Ye and Ye [35], Ye and 

Zhu [36], and the refnences therein. 

It is well known ht't' ~lordukhoYich [14] and Rockafellar and Wets [30]) that robust 

Lipschitz ian behavior of st't -mlued mappings F: X =t Y between finite-dimensional spaces 

X and Y can be compkteh· characterized by using the normal coderivative of F at the 

reference graph point (.I'.!) J E )!,ph F defined by 

(1.1) D'NF(.T·.y)(i/) = {.1" E X"j (.r".-y") E N((x,y);gphF)} 

via the nonconvex nonnal com• introduced by ~!ordukhovich [12]. In infinite-dimensional 

spaces X andY, codcrh·atiH' constructions of type (1.1) do not provide anymore charac

terizations of Lipschitzinn stability. Such characterizations of the classical Lipschitz con

tinuity and its proper St't-Hllued C'Uiilltt'rpnrt. known as the Aubin •:pseudo-Lipschitzian': 

(or Lipschitz-like) property. wen• c•stablisbed in ~Iordukhovich [16] and Mordukhovich and 

Shao [23] involving the so-called mi.rcd cmhnt'(divc D~1 F(:r, j}), which is generally different 

from {1.1) in infinite dimensions: se·e· Section 2. ~!arcover, the usage of both normal and 

mixed coderivatives provides tu:o-sHlcd cstnnal.t:i of the e:ract. bounds for Lipschitzian mod

uli, which give precise form·ula.s to cmnpute the exact bounds under certain coderiva.tive 

normality conditions; see ~lordukho,·icb [17. 18j. 
In this paper we develop new results of roderiuati11e calculus that, being combined wn11 

the afore-mentioned characterizatious. alluw us to ensure the preservation of robust Lip

schitzian stability under various compositions of s('t- valued mappings, together with rela

tionships between the correspouding l'Xact Lipschitziau hounds. As consequences of these 

results 1 we derive effi.cielit couditious for p!TSPI"\'ing tlw n'lated metric regular·ity and open

ness/covering properties of st't-\'tducd 111appin~s llltd~'r coil! positions, with relationships be

tween their exact bounds. 

The usage of mixed coderin1tin's allow:; us to estalJlish also new upper estimates for 

singular subgradients of the so-called rnmgm(l./ fwu:twn.~· of the type 

(1.2) /l(.r) := iuf ,:-(.r. y) 
11.:::Ft.r.' 

generated by a set-vaiued mappiug F: X :=: } · hct \Y£'('11 I3auach spaces and an extended

real-valued function :p: X x Y ~ IR := (- :xc. :x: J. Fewctions of this type are intr-insically 

nonsmooth and highly important in the theory of variational analysis and its numerous 

applications, particularly to optimization and control, where they are often called the value 

functions (and also as the Hamilton-Jacobi-Bellman-Isaacs functions in the calculus of vari

ations, optimal control, and differential games): see, e.g .. Clarke et al. [4], Rockafellar and 
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Wets [30], Vinter [34]. and the references therein. Based on the refined upper estimates ob

tained and on subdifl'crc·mial characterizations of the classical Lipschitz continuity that goes 

back to Rockafellar [29; in finite dimensions, we derive new efficient conditions ensuring local 

Lipschitz behavior for t lll' general class of marginal functions (1.2) and their modifications 

in the case of infinite-dlllll'llsional spaces; this is undoubtedly needed for many applications. 

The rest of the p;qwr i:-; organized as follows. Section 2 reviews preliminary material 

from variational anah·-..i.-- and generalized differentiation widely used to derive the main 

results in the subsequ• 1;1 ~vctiOll!::i. 

Section 3 is devol t ··l 1 () curhrit•ativc calculus. The main result here is a new chain rule 
for mixed coderivati\"t"- 11f <"Olllpositious we label as zero chain rule. In contrast to general 

coderivative chain ruJ('..., fur hot II IJormal and mixed coderivatives, which inevitably require 

the usage of the nonnu! codni\"<ltin' for ·inner mappings in compositions, the new result 

applies only to mixed ('udt·ri,·atin·:-. of compositions at zero value y* = 0 of the coderivative 

argument. But this b t':\;tct!_Y \\'h<tt \\T IJel'd for applications to robust Lipschitzian stability! 

The main topic of Sl'ct itlll .J i~ t ht· JH'c.-;cn,a!.'ion of robust Lipschi.tzi.an stab·il·ity ( v .. ·ith 

the corresponding cakttlu:... for t lH' t•xact hounds) under various operations on set-valued 

mappings. Despite ib uudouhtl'd i111portnnct~. this topic has not drawn much attention in 

the literature; some results are available in the book by Rockafellar and Wets [30] in finite 

dimensions and will also appear in the• hook by ~Iordukhovich [18] in infinite-dimensional 

spaces. We derive refined nmcli t ions in t l1is direction for fairly general settings based on the 

mentioned coderivatiYe criteria fur Lipschitzian stability and on the special zero calculus 

results established in SectioiJ 3. In coutra .. ...,t to finite dimensions, the infinite-dimensional 

consideration requires the usagL' of tht' recently developed calculus of sequential normal 

compactness, by which we mean rc:-.tdt:-. on presen·ing certain compactness-like properties 

in variational analysis unavoidably ueeded iu infinite-dimensional spaces; see Section 2. 

The concluding Section 5 is devoted to the study of marginal functions of type (1.2) as 

well as their extensions covering. in particular. the distance function to moving sets. The 

principal new relationship established lwtweel! the singular subdifferential of (1.2) and the 

mixed coderivative of tht> generating mappiug, F is obtained ill the form 

(1.3) {)"'i'(.r) C u {.r· •C: .d r E D\1F(.i.,ij)(O)} 
yt:.'-)l.r) 

provided that t.p is locally Lipschitziau. whnl' 

(1.4) S(;r) := {.11 E Ft.r): /1(.1'1 = ;l.r.yJ} 

stands for the minimwn/solufion 1!1(1/' to tht· J1iH<l!llt'ttTiZt'd uptimizat1cn problem in (1.2). 

Inclusion (1.3) improves prt•viuusl.\· kuuwu l'l'Sillt:-. of this t.vpc. where DA1 is replaced by the 

normal coderivative (1.1). Based on (1.3), we deriw m•w conditions ensuring local LiTJS

chitz continuity of marginal functions via the mixed coderivative of the generating mapping 

F. Taking into account the well-developed calculus for mixed coderivatives, this allows us 

to establish efficient results for Lipschitz continuity of marginal/value functions in specific 

• classes of parametric optimization problems, where F(x) describe (moving) sets of feasi

ble solutions. It covers, in particular, mathematical problems with equilibrium constraints 
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(MPECs) corresponding to F(x) arose as solution sets to lower level optimization problems, 
or-more generally-to parametric variational inequalities and complementarity relations. 

Throughout the paper we use standard notation of variational analysis and generalized 
differentiation. Given a set-valued mapping F: X =1 X' between a Banach space X and 

its topological dual x·. denote 

LimsupF(:r) := {x' EX' I 
X---tX 

w' 
::J sequence Xk ...-....t i: and xk _____, x* 

with xk E F(xk) for all k E IN} 

the sequential Painlev<'- K uratowski upper/ outer limit with respect to the norm topology of 
X and the weak' topology of X'. where IN := {1, 2, ... ). Recall that the norm of any 

homogeneous multifunction F: X ==! Y is defined by 

I iF II = sup { ]]yJJI Y E F(x) and ]]x]] :S 1}. 

2 Preliminaries 

This section mostly contains some preliminary material on generalized differentiation widely 
used in what follows. We refer the reader to the book by Mordukhovich [18] for more details 
and discussions. Unless otherwise stated, all the spaces under consideration are Banach. 
As usual, lB and JB' stand for the closed unit balls of the space in question and its dual. 

Given n c X and E 2: 0, define tlw collection of e-norma.ls ton at X En by 

(2.1) ]\--: -") { . '"II· (:r',:r- x) } ,(x; H := .r E .\ lll;,strp ]I.T _ x]] :S E , 

x..-----Joi" 

where x ~ x means that x __, .f with :r E n. When e = 0, the set N(x; n) := N0 (x: n) in 
(2.1) is a cone called the prenormal cone or the Fn!chet normal cone to n at x. 

The basic/limiting normal cone ,\'(.r: n) is obtained from .iV,(x: n) by taking the sequen

tial Painleve-Kuratowski upper limit in the weak' topology of X' as 

(2.2) N(x: n) := Lim sup .Vc(.r: n). 

" :r-j· 
.:]0 

where one can put e = 0 when n is closed around .1: and the space X is Asplund, i.e., 
a Banach space whose separable subspaces have separabk, duals. This class of spaces is 

sufficiently large including, in particular, every reflexive space; see, e.g., the book by Phelps 

[27] for more information and references. 

Let <p: X --> IR be an extended-re.al-valued function finite at x. The set 

(2.3) D,<p(x) := {x' E X'llim inf <p(:r)- 9~5:)- \~··, ,. - x) 2: -r} 
x-.:r X- X 

is called the (Frechet-like) r-s-ubdifferential of <p at x. The basic/limiting subdifferential of 
<p at i is defined by 

(2.4) a<p(x) := !imsupD,<p(x), 
:r-:_,i: 

t)O 
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where x :!_, x meano that x ---> x and <p(x) ---> <p(x). Note that §,<p can be replaced by 
§<p := ao'P in (2.4) \\'lwn X is Asplund while <pis lower semicontinuous (l.s.c.) around x. 
Let us mention an equivalent geometric definition of the basic subdifferential (2.4) by 

8,cl.i) = {x' EX' I (x',-1) E N((x,<p(x));epi<p)) 

via the epigraphical ,, 1 Ppi ,c := {(1·. p) EX x JRI 1-'?: <p(x)). 
The singular suiHI•fl• n ntwl of ,c: X___, lR at xis defined by 

(2.5) iF;I.i'J = Limsup>.a,<p(x). 
J"-=. i: 
;,.X)O 

This construction makt·' st'!lst' ouh· for nm1-Lipschitzian functions, since 3""<p(x) = {0} if <p 
is Lipschitz continuou.' aruund .1·. \;ott' that f: > 0 can be omitted in (2.5) if X is Asplund 

and <p is l.s.c. around .r 

Let F: X =t Y bl' a ~\'1-\'alul'd uwpping betv.,reen Banach spaces with the graph 

gphF := {l.r.yJ EX x Yl y E F(x)). 

The normal coderivatn·t· D\.Fi.i· .. •/I: 1·· =:X' ofF at (x, y) is defined by 

(2.6) DjyF(.i. 1JJ(u'l = {.r" cc .\"I (.r".-y') E N((x,jj);gphF)) 

and the corresponding mi.ru! codtnl'rlftrr i~ 

Div1F(x, y)(y') = { 
(2.7) 

• . \. ' _ ( . ) gph F ( _ _) , w' , 
.r ~ - i =' :.~.: • J. (.rJ.:. VI.: ___. x1 y , xk -----> x , 

!Ji-'-y· \\'ith (.r; .. -<;k)EcV,,((xk.Yk);gphF)}, 

where ~ signifies thl' Weak- SU{IH.J/!'1(1/ COll\'L'r).!,t'IJCl' ill x·, \\'bile !!j Stands for the l10fl11 

convergence in the dual space; we omit ! · i iu wilcJ\ follow~. One can put Ck = 0 in (2.7) if 
X andY are Asplund and if tlw graph ofF i ...... cl(l:-iL'd <li'!J\\IHi (.f·. Y). Clearly 

where the equality obviously holds if ditll }. < x. \\'hill' the inclusion may be strict in 

any infinite-dimensional space Y P\.l'll for Lipschitz continuous and Frechet differentiable 

mappings on JR. The equality 

defines the class of codcrivat.ivcly nm·mr1lmappings Fat (.T·. [)). This class is rather large (see 

sufficient conditions presented i11 :vlordukhovich [17, Proposition 3.2] and in Subsection 4.2.1 

of the afore-mentioned hook) particularly including all strictly differentiable mappings, 
convex-graph mappings, and the so-called str'ictly Lrpschitzian mappings on Asplund spaces. 
The latter notion for locally Lipschitzian mappings f: X ---> Y into infinite-dimensional 
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spaces was defined by Mordukhovich and Shao [20] via the existence of a convergent subse
quence for any sequence in the form 

f(xk + tkv)- f(xk) _ d t 
1 0 as Xk ---+ x an k 4-

tk 

whenever v belongs to some neighborhood of the origin in X, but it happened to be equiv
alent to the major wrsion of "compactly Lipschitzian" mappings introduced and studied 

much earlier by Thibmilt [31]. 
One of the most fuudamental differences between variational analysis in finite and infi

nite dimensions, crucial for many aspects of generalized differentiation and optimization, is 
the necessity of imposing additional compactness-like requirements in infinite-dimensional 
settings that ensure 11011 triviality w bile passing to the limit in the weak' topology. In this 

paper we use the following general properties that are automatic in finite dimensions. hold 
for "reasonably good~· ::iets and mappings, and are preserved under various operations. 

A set !1 is sequentially normally compact (SNC) at i if for any sequences Ek 1 0, Xk .S i, 
and xk E N,, (xk; !1) one has 

[,;:,.; o] = [llxJ:II ...... o] as k ...... oo, 

where Ek can be omitted if X is Asplund and if !1 is locally closed around i. The SNC 
condition is automatic when !1 satisfies the so-called "compactly epi-Lipschitzian" property 
in the sense of Borwein and Strojwas, particularly when it is convex and finite-codimensional 

with nonempty relative interior. 
A set-valued mapping F: X =1 Y is SNC at (i,y) E gphF if its graph enjoys this 

property. For the case of mappings, a more subtle partial SNC (i.e., PSNC) property can 

be defined. We say that F is PSNC at (;r, D) if for any sequences Ek l 0, (xk, Yk) g~F (i, y), 
and (xio, YZ) E N,, ( (xk, Yk); gph F) one has 

[x;:,.; o, IIYI:II ...... o] = [llr;:l! ...... o] as k ...... co, 

where Ek = 0 in the Asplund space aud closed graph setting. The PSNC property always 

holds when F is Lzpschitz-like around (:r. [i) iu the following sense of Aubin [1]: there exist 
neighborhoods U of :f· and V of :1} as well as modulus I ;:> 0 such that 

(2.8) F(u) n V C F(v) + f]]u- 1•]]/D whencYer u, v E U. 

This reduces to the classical (Hausdorff) local Lipschit.zian behavior of F around z corre
sponding to V = Y in (2.8). The infimum of all Lipschitzian moduli C in (2.8) is called the 
exact Lipschitzian bound ofF around (:r, D) and is denoted by lip F(i, y). 

The Lipschitz-like property ofF around (i, y) is known to be equivalent to the metric 

regularity and covering/linear openness properties of the inverse mapping F- 1 around (y, i), 
with the exact bound relationships 

(2.9) 

These three eqnivalent properties play a fnndamental role in many aspects of nonlinear 
analysis, especially those related to optimization. 
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An extended-real-valued functions <p on X is sequentially normally epi-compact (SNEC) 
at x if its epigraph is SNC at (x, <p(x)). This property always holds for locally Lipschitzian 

functions and their appropriate extensions. 
Finally in this section, we formulate two fundamental results of variational analysis that 

give coderivativejsubdifferential characterizations of robust Lipschitzian properties for set
valued mappings and extended-real-valued functions, respectively. These results form the 
basis for developments in this paper. 

Theorem 2.1 (coderivativejsubdifferential characterizations of local Lipschitz 
continuity). Let the .,paces undeT consideration are Asplund. Then the following hold: 

{i) A closed-graph mapping F: X =t Y is Lipschitz-like araund (x, y) E gph F if and 

only if DMF(x,y)(OJ = {0} and F is PSNC at (x,y). In this case 

iD~, 1 F(.J.I/II:; lipF(.r,y):; IIDNF(x,y)ll 

for the exact Lipschztzum bound ofF around (x, y), where the upper estimate is fulfilled 

when dim X< oo. Thus 

lipF(.f·.y) = liD;1F(.r.i/)ll = IIDNF(x,y)ll 

if in addition F is codenvatively nann a/ at (i, [j). 
(ii) A l.s.c. function ,o: X ~ lR finite at :r ·is locally Lipschitzian around x if and only 

if 8 00<p(x) = {0} and f is SNEC at tl11s pomt. 

3 Coderivative Calculus 

In this section we derive a new zero chain rule for mixed coderivatives and present some of its 
useful subsequences. Let us start with tlH' formulation of a fuzzy sum rule. for c-coderiva./ .J 

of set-valued mappings F: X =t )" at (.I". 111 E gpll F defim•d by 

D;F(i . .'/)(y') := {.r' EX'! (.r'.-1() E .\-,((.f· . .i));gphF)} 

via the set of c-normals gin'u iu (2.1 ). Th<' follo\\'itlg r('s\lh. nsed in the proof of the main 

theorem in this sectiou, b a ~impliticntiou uf a !Hon· gt'!HTal fuzzy rule for c-coderivatives 

established by Mordukhovich all(l Shau [221. 

Lemma 3.1 {fuzzy sum rule for .'"-coderivatives). Let X andY be Asplund spaces, 

let Fi: X .==f Y, i = 1, 2. be set-vahu:d mappmys. and It!~ 2: 0. Fix 

y E (F1 + F,)(T) with 11 = 1J1 + !], nnd 1f, E r~(.l") as i = 1, 2 

and assume that either F 1 is Lipschito-likc around (.1·. ,ii1 ). or F2 is Lipschitz-like around 

(x,y,). Then for every x' E D;(F1 + F,)(i",y)(y') and eve1y 17 > 0 there are 

(x;,Yi) E gphF; n [(i,y;) +zJII3] and .t:; E D'r~(.c,y;)(y;), i = 1,2, 

satisfying the estimates 

IIYi- y'll S E + Z) and ""''- xj -J•211 5:: E + 1). 
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Recall that a set-mlued mappingS: X =I Y is inner semicontinuous at (x, fi) E gph S if 

for every sequence x; ~ x with S(xk) oJ 0 there is a subsequence of Yk E S(xk) converging 

to fi as k --> oo. Tlw mapping S is inner semicompact at x with S(x) oJ 0 if for every 

sequence Xk --> x wit il S(xk) oJ 0 there is a sequence Yk E S(xk) containing a convergent 

subsequence. 
Now given two ",_,·aluecl mappings G: X =I Y and F: X x Y =I Z, consider their 

general composition l i 1 ·tined h~· 

(FoG)(:r):= U F(x,y). 
yEG(") 

Theorem 3.2 (zero codcrivative chain rule for general compositions of set-valued 

mappings). Fix z E . F c C:i(.Y") a11d assume that the mappings F and G are closed-graph 

around the referenCI l"''"t.~ mul tlu1f the spaces X, Y, and Z are Asplund. Define 

S:r.ol = {!1 E G(:r)l o E F(:r,y)}. 

(i) Suppose that S 1' "'111 r ·" 1111mnlmuous at ( (;r. z). fj) E gph S and that F is Lipschitz

like around ((x,y),z). 'lhFn 

D~ 1 (FoG)(J·.z)(O) c {.r' E X'lx' E Dj.1G(x,y)(O)}. 

(ii) Suppose that S is 11mn- scmiWTIIJHlcl at (i, z) and that F is Lipschitz-like around 

((i, y), z) for ally E S(:f·. z). The,, 

Dk(F o G)(;i·, 5)(0) c U { .r' E X'l :r' E Dj.1G(x, y)(O)}. 
yf:."iil".::) 

Proof. It is sufficient to justify assertion (i). since the proof of (ii) is similar. Define the 

auxiliary mapping 

(3.1) H).r.y) := F(.r.JJ) + -'>((.r.y):gpbG), 

where the set indicat,H mappmy -"I :I!) is )!,iVl"ll by -'>I w: \l) :=" 0 if wE l1 and t:.(w; f!) := 0 
otherwise. Fix an arb it rm·)· elenwnt / i: D;1 IF c (;) 1.1·.:) ( 0) and, using definition (2. 7 ) of 

the mixed coderivative. fiud :.;; U . .1·k- .1-. ::J. - : • .1'; ~.?:*,and zk,- 0 (con\'erging 

by norm) as k -> oc sucb tbat 

(3.2) Zk E (FoG)(.Tk) and (.r; .. -o;.l E .V,,(I.r,_.:,):gph(FoG)), k E IN. 

Since Sis inner semicontinuous at ((.i· . .:). f;). find YJ: E S'(;r~. .. zk) whose subsequence con

verges (without relabeling) to sonw .1) \\"c baw .1/ E S(.i·. :0) bv the closed-graph assumptions 

of the theorem. It is cas)· to obsen"<' frulll (3.2) that 

(xj;,O,-zk) E fii£,((xk·Yk:zk):gphH) = (1·k.O) E B;,H(l"k.Y>.Zk)(zk), k E IN, 

by the construction of E-coderivatives. Taking into account the sum structure of the mapping 

H in (3.1) and using Lemma 3.1 along a fixed sequence "Ilk t 0, find 

((xlk,Ytk),zlk) E gphF. (x2k:Y2k) E gphG, (xik•Yik) E D'F(Xtk.Ytk,Zlk)(zjk), 
and (x2k·Y2k) E N((l'2k-Y2kJ;gphG) as k E IN 
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satisfying the estimates 

JJ(xtk.Ylk>Ztk)- (Xk>Yk,zk)JJ $ '1/k, JJ(x2k>Y2k)- (xk,Yk)JJ $ '1/k. 

JJ(xk, 0)- (x;k, Yik)- (x2k, Y2klll $ £k + '1/k, Jlzik- zZJJ $ £k + '1/k· 

Since ]JzZJJ-> 0 and ]Jz;k- zkll $ fk +'1/k, we have JJzjkiJ---> 0 ask-> oo. The Lipschitz-like 
assumption on F ensures, by Theorem 2.l(i), that F is PSNC at ((x, y), z), which implies 

that JJ(xjk,Yik)]]---> 0. Combining this with 

we conclude that x;k -'S 0 and Jlu2kll ___, 0 ask---> oo, and thus x' E DA.tG(x, y)(O). This 
completes the proof of the theorem. 

Theorem 3.2 immediately· applies. without any change, to standard compositions of 

set-valued mappings when F = F(y). and also to special cases of single-valued mappings 

in compositions. Let us present its corollary for the case of single-valued inner mappings 

G = g: X---> Y when the inner semicont.inuity assumption in (i) holds automatically. 

Corollary 3.3 (zero chain rule with single-valued inner mappings). Under the 

general assumptions of Theorem 3.2. suppose that g: X ---> Y is continuous around x while 

F: Y =t Z is Lipschitz-like around (g ( i). Z). Then 

DA1(Fog)(i.z)(O) c {:r' E X'l x' E DA1g(x)(O)}. 

Another corollary of Theorem 3.2 concerns the so-called reversed mixed coderivative of 

F: X =t Y at (x,y) E gphF defined by 

DA1F(x,y)(y') := {:r' E X'jy' E -D;1F- 1(y,x)(-x')}, 

which is convenient for characterizing the metric regularity and covering/openness prop

erties; cf. Mordukhovich [16], Mordukhovich and Shao [23], and Penot [26]. The result of 

Theorem 3.2 allows us to derive a useful relationship for the kernel 

of the reversed mixed coderivative under compositions. 

Corollary 3.4 {kernels of reversed mixed coderivatives under compositions). Let 

z E (F o G)(x), where G: X =t Y and F: Y =t Z an: closed-graph mappings between 

Asplund spaces. Assume that the mapping S(.r. z) := G(J·) n F- 1(z) is inner sem.icornpa.ct 

at (x,z) and that G is metrically regular around (i,y) for ally E S(x,z). Then 

ker i5;1 (F o G)(x, z) c U ker DA1F(!j,Z). 
f)ES(i,i) 
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Proof. Fix z' E ker D;t(F o G)(x, z) and use the identity 

(F o c)-1 = c- 1 o p-1. 

Then the relation 0 E iJ;t(F o G)(x, z)(z') is equivalent to -z' E D'Jw(F o G)-1(2, x)(O). 
Since the metric regularity of G around (x, fi) is equivalent to the Lipschitz-like property of 

c- 1 around (fi, x), 11·, ~l't from Theorem 3.2 that 

This gives 0 E iJ;1F 'I·:)(:'). ami thus z' E ker iJ;1F(fi, 2), which completes the proof of 

the corollary. 6 

4 Robust Lipschitzian Stability 

This section conceru~ culndu.~ uf Ll[!schit::ian stability by which we understand efficient 

conditions ensuring the p1·c . ..,nTatwn uf robust Lipschitzian properties under various op

erations. As usual~ we pay tht.· main attention to the general Lipschitz-like property of 

set-valued mappings. The calculusjpresen·ation results established for this property easily 

imply the corresponding resulto for tbt' dassicallocal Lipschitzian property, as well as for 

metric regularity and CO\'t.•ring \'iH im·t·r~t' mappings. Observe that we also obtain relation

ships for the corresponding e.wct bounds nndt•r ,·cuious compositions. 

Our first result in this Sl'CI iun t'll:-.tJH'~ t h<' prL'SL'rYations of the Lipschitz-like property 

under general composdions of Sl'l·\·;dtwd llluppiug~. 

Theorem 4.1 (Lipschitz-like property under general compositions). Considering 

closed-graph mappings F: X x 1· =: Z ancl C: X =: l' between Asplund spaces, take a 

point z E (F o G)(x) such that gph IF o G I '-' locally dosed m-ound (x, z) and define 

S ( .r. : i = { II ~ G \.r I: : E F( r. y) } . 

Then the composition FoG is Llpsclut ::·l1k1 amund (J . .: ) m car:h of the following two cases: 

(i) Sis inner sernicuntinuou.~· at ( (./" . .:). Tn ··; gph ,-,·. F '·" Lipsch'itz·li,ke a.ro'Und ((X, f)), Z), 

and G is Lipschitz-likf' arom11/ (.1·. /) 1. 

(ii) S is inner semicompad at (./· . .:}. and jo1· f't'r'ry .Q E S(i,Z) the mapping F is 

Lipschitz-like around ((i·, D). z) 1chilc G 1s Ltp.-r-luto-lth amund (x, fi). 

Proof. It is sufficient to justify (i) observing that th<• proof of (ii) is similar. Since G is 

Lipschitz-like around (i,fi), we get from Theorem 2.l(i) that D'JwG(x,y)(O) = {0}. The 

new zero chain rule from Theorem 3.2 allows us to conclude that D'Jw(FoG)(x, z)(O) = {0}. 

Thus, by the characterization of Theorem 2.1(i), it remains to check that the composition 

FoG is PSNC at (i, z). 

To proceed, we take any sequences (l-'k• zk, xi_., zk) such that (xk, Zk) ~ (X, 2), xk ~ 0, 

llzZII-> 0 ask-> oo, z,. E (F o G)(xk). and 

( 4.1) 
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observe that we omitted Ek l 0 in comparison with the general definition of the PSNC 
property, since the spaces X x Z are Asplund and the graph of F o G is locally closed. 
By the inner semicontinuous assumption on Sat ((x,z),y), we get Yk E S(xk,Zk) such 
that Yk -+ y along a subsequence still labeled {yk}. Then arguing similarly to the proof of 

Theorem 3.2 with the usage the coderivative fuzzy sum rule from Lemma 3.1, fix 1Jk l 0 and 
find by ( 4.1) some sequences 

gphF ( ) gphG (- _) (xlk,Ylk,Ztk) -----------1 (X,jj,Z), x2k!Y2k -----+ x,y, 

(xik•Yik) E £>·F(x!k>Y!k>Z!k)(z;k), and (x2k•Y2k) E N((x2k,Y2k);gphG) 
(4.2) 

satisfying the estimates 

It follows from (4.3) that llz;kll -+ 0. By the PSNC property ofF implied by its assumed 
Lipschitz-like property. we get from ( 4.2) that II (x;k, y;k) II -+ 0. Then ( 4.3) yields that 

IIY2kll -+ 0, and hence the Lipschitz-like property of G ensures by (4.2) that llx2kll -+ 0. 
This finally gives by (4.3) that llx·kll -+ 0, which justifies the PSNC property ofF o G and 
completes the proof of the theorem. h. 

Theorem 4.1 automatically applies to the standard compositions of set-valued mappings 
with F = F(y). The next result gives more: it establishes a calculus rule for the exact 

Lipschitzian bounds under some additional assumptions. 

Theorem 4.2 (Lipschitzian bounds under compositions). Let G: X =I Y and 

F: Y =I Z be closed-graph mappings between Asplund spaces. Fix z E (F o G)(x) such 

that gph (FoG) is locally closed around (x, z) and form the mapping S(x, z) as in Theo

rem 4.1. The following assertions hold: 

(i) Assume that Sis inner semicontinuous at ((.r.z),y) E gphS. Then the composit·ion 

FoG is Lipschitz-like around ( :T. z) provided that. G is Lipschitz-like around ( x, !J) and that 

F is Lipschitz-like around (!J, z). If in addition dim X < oo and the mappings G and F are 

coderivatively normal at (x, y) and (y, z), respectively, then 

(4.4) lip (F o G)(x, z) S lip G(i, y) ·lip F(y, z). 

(ii) Assume that S is inner semicompact at (x. z). Then FoG is Lipschitz-like around 

(x, z) provided that G is Lipschitz-like around (i, y) and F is Lipschitz-like around (y, z) 

for ally E S(x,z). Moreover, one has 

(4.5) lip (F o G)(i. z) S ma.x lip G(.i'. !J) ·lip F(y, z) 
[JES(i:,Z) 

if in addition dim X < oo while both G and F are coderivatively normal at ( x. y) and (y, z), 
respectively, for ally E S(x, z). 

Proof. First we justify the exact bound formula (4.4) in assertion (i). It follows from 
Theorem 4.5 in Mordukhovich [16] that the chain rule 

(4.6) D'(F o G)(x, z)(z•) c DNG(x, y) o D' F(y, z)(z'), z' E z•, 
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holds for both normal (D' = Djy) and mixed (D' = DM) coderivatives of Lipschitz
like mappings between Asplund spaces; observe that the normal coderivative of the inner 

mapping G is used in (4.6) in both cases of D' = Djy, DM. Taking into account the 
well-known relationship 

for the norms of any positively homogeneous set-valued mappings, we derive (4.4) from the 

chain rule (4.6) app]i,·d to both coderivatives D' = Djy, DA·f and from the bound estimates 
of Theorem 2.l(i) held under the assumptions made. 

The proof of (4.5i ·iu assertion (ii) is similar. We need to observe only that the "max" 
in (4.5) is achieved, sitH't• the set 5(.r . .0) is compact in the setting under consideration and 
the real-valued functiou lipH(-) is upper semicontinuous on the graph of any Lipschitz-like 
set-valued mapping HI·). 6 

It is worth mentiouiug that til(' local closed-graph assumptions of Theorems 4.1 and 4.2 
automatically hold when both F and G are locally closed-graph and the mappings 5 therein 

are inner semicontinuousjsemic:ompact around the reference points. 

The following consequence of Thc•orem 4.2 specifies its assumptions for the case of single
valued inner mapping~. 

Corollary 4.3 (Lipschitzian properties of compositions with single-valued inner 
mappings). Let z E ( F o G)(./'). 11'/,.n· F: l' =< Z is locally closed-graph around (g( x), z) 

while g: X ---> Y is locally Lipsclnban 111'01md .1· in the Asplund space setting. Then Fog 

is Lipschitz-like around ( f, ;; ) pro I'Hierl that F is Lipschitz-like around (g( x), z). Moreover, 

lip(Fog)(.J·.:) :Slipg(.f·) ·IipF(g(x).z) 

if in addition X is finite-dim(~nswnal. y Ui strictly Llp . .,chit:ian at X, and F is coderivatively 

normal at (g(x),z). 

Proof. To derive thi:-; result fnHn Thcon'lll -1.2. it JTtunius to observe that any strictly 
Lipschitzian mapping g: X__,)' \\'it II a11 Aspi111Hi dunwiu space X is coderivatively normal 

at the reference point: see :'dorduklw\'ic!t )o/. 6 

The composition re~ults obtained ahm·t· ha\'l' man_\' spl'cifications corresponding to par
ticular choices of mappings F and G. :\ext \H' present conditions ensuring the preservation 
of Lipschitzian stability under swnmatio11 uf !-il't-\·ct!uPd mappings. For brevity, consider 
only the "inner semicompact" case. 

Theorem 4.4 (Lipschitz-like property under summation). Let F,: X =I Y, i = 

1, 2, be closed-graph mappings between Asplund spaces. Take fi E (F1 + Fz)(x) such that 

gph (F1 + Fz) is locally closed a.mund (x. D) and consider the mapping 5: X x Y =I Y2 

defined by 
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Assume that Sis inner semicompact at (x,y). Then F1 +F2 is Lipschitz-like around (x,y) 
provided that F, is L'l'schitz-like around (x,y,) and F2 is Lipschitz-like around (x,y2) for 

every (fi, , fi2) E S ( x .. 1) I. Moreover, 

(4.7) lip(F1 • fC,)(.1·,y)::; max {lipFJ(x,fi1) +lipF1 (x,y1)} 
(i}J ,y2 )ES(i,y) 

if X is finite-dimer~..~wnul and each mapping Fi is coderivatively normal at (X, fli), i = 1, 2, 

for all (y,,fi2) E S(.i. w 

Proof. It follows fru11. \lorduk!Jm·ich [16, Theorem 4.2] that the sum rule 

(4.8) D'(F1 +F2)1.i.,/ll1/) c u 
' 'I, .y.: IE .'l(i' .. if) 

holds for both coderi'"' i'"'' u· = D\·. D;, under the assumptions made. Putting y' = 0 
in (4.8) with D' = D; 1. "''' gt·t h,,· Tltt•oJnn 2.1(i) that 

D\11Ft + F2J(i,fi)(O) = {0). 

Furthermore, the PS'\'C proper!\' of the sum F, + F2 follows from the PSNC calculus 
result by Mordukhovic!J aud Waug [2~. Theorem 5.1]. Thus, by the converse implication of 

Theorem 2.1(i), we coucludc• tltat Ft + F, is Lipschitz-like at (x, y). Finally, using the chain 
rule (4.8) for both coderivati\'l'S D" = n; .. n;, and the obvious inequality 

for the norms ofpositiYe homop;eueuus multi functions. we arrive at the exact bound formula 

( 4. 7) similarly to the proof of Theorem ~.2. 6 

Next, give set-valued mappiug~ f~: .\ .=; }' for i = 1, 2 and h: Y1 x Y2 ----7 Z, consider 
the so-called h-composifwn 

that covers various bmwry opr mt toll:,: :-.t't' }.lordttkh< )\·idt _1 :J] and lVIordukhovich and Shew 

[21]. The following result eiJsuriug the prt':-.en·;t t io1; of L ipscbi tz stability under h-compositions, 

is a consequence of Tbt•orems -1.2 and -l.-l. 

Corollary 4.5 (Lipschitz-like property under l1-compositions). Let F,: X =t Y; for 

i = 1,2, and let h: yl X y2 - z Ue mappmy.~· bt:fiL'U'/1 Asplnnd sra.ces. DefineS: X X 

Z=tY,xY2by 

h 
and, given z E (F, o F2)(x), suppose that S inner· semicompact at (x, z). Assume also 

that for every y = (!1,, f12) E S(i'. z) the mappings F, are closed-graph and Lipschitz-like 
around ( x, yJ) and ( x, fh). r·espectively, and that the operation h is locally Lipschitzian 

around (y,, !i2). Then F1 ~ F2 is Lipschitz-like around (i, z). 
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Proof. Define F: X =t Y1 x Yz by F(x) := (F1(x),F2(x)) and observe that F = F\ + Fz, 

where F1(x) := (F1(x), 0) and F2(x) := (0, Fz(x)). It follows from Theorem 4.4 that F is 
is Lipschitz-like around (x, y) for ally= (th, fjz) E S(x, z). Since clearly 

h 
(F1 o Fz)(x) = (h o F)(x) 

and since h is locally Lipschitzian, we apply now Theorem 4.2 to the latter composition and 
thus complete the proof. 6 

Finally, let us derive a useful corollary of Theorem 4.2 that ensures the preservation 
of metric regularity and covering properties under compositions with calculus of the corre

sponding exact bounds. 

Corollary 4.6 (metric regularity and covering properties under compositions). 
Let z E (F o G)(x), where G: X =t Y and F: Y =t Z are closed-graph mappings between 

Asplund spaces. Fix z E (F o G)(.r) such that gph (FoG) is locally closed around (x, z). 

The following assertions hold: 

(i) Assume that the set-valued mapping S(x, z) from Theorem 4.2 is inner semicontinu

ous at ((x,z),y). Then FoG is metrically regular (has the covering property) around (x,z) 

provided that G is metrically 1·egular (has the covering property) around (x, y) and that F 

is metrically regular (has the covering property) around (Y, z). If in addition dim Z < oo 

and both F- 1 and G- 1 are coderivati.vely normal at (z, y) and (y,x), respectively, then 

reg(FoG)(i.z) S regG(i,y) regF(y,z), 
cov (F o G)(x. z) 2 cov G(x, y). cov F(fj, z). 

(ii) Assume that S(x, z) is inner semicompact at (i. z). Then FoG is metrically regular 

(has the covering property) around (x, z) provided that G is metrically regular (has the 

covering property) around (i, y) and that F is metrically regular (has the covering property) 

around (y,z) for every y E S(x,z). If in addition dimZ < oo and for every y E S(x,z) 

both F- 1 and G-1 are coderivatively normal at ( z, Y) and (fi, x), respectively, then 

reg(FoG)(x,z) S max regG(i:.y)·regF(y,z), 
!}ES(i:,Z} 

cov (F o G)(x, Z) 2 min cm· G(i·, g)· cov F(y, z). 
yES(i,i) 

Proof. It follows from Theorem 4.2 due to the identity (F o G)- 1 = G- 1 o F- 1 and the 

equivalence between the Lipschitz-like and metric regularity /covering prOJ?erties with the 
exact bound relationships (2.9) discussed in Section 2. 6 

5 Marginal Functions 

The concluding section of the paper is devoted to studying the local Lipschitzian property 
f """"""""''";ti[. ''.'""~~..... . b o VDi!IJ:JtnYiiD:Gr'!;/tfJ!tr~'!l!,Q.l(W given y 

(5.1) 
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where <p: X x Y --> IR is a l.s.c. cost function and where F: X =t Y is a generating set
valued mapping. We have discussed in Section 1 the meaning and scope of applications of 
marginal/value functions in variational analysis, optimization, and control. 

In this section WP develop a subdifferential approach to Lipschitzian stability of marginal 

functions based on its characterization established in Theorem 2.1(ii). The latter result 
characterizes the loc;d Lipschitz continuity of (5.1) around x via the simultaneous fulfillment 
of the singular subrf,jfn·ential condition 8 00 /"(x) = {0} and the SNEC property of I" at 

x, provided that I" i- Lo.c. around .r and that X is Asplund. First recall the following 
convenient subdiffenu t I(J/ dcscnption of the SNEG property for l.s.c. functions on Asplund 
spaces derived by ~lurdukho,·ich and :\am [19]. 

Lemma 5.1 (subdifferential characterization of SNEC functions). Let X be As

plund, and let <p: X - · m I" 1111 r.rtrnded-rml-valued function that is l.s.c. aro·und x. Then 

<p enjoys the SNEC f11VfH'1'tll at .i· 1j and only if for any sequences Xk --> x, Ak 1 0, and 

xk E >.k§<p(xk) ask E lY onr lw . .., thr nnplication 

Our first goal is to establish a rei at ionship between the singular subdifferential of the 
marginal function I" and the mi.mlc·cHil'ri,·ative of the generating mapping Fin (5.1). To 
proceed, define some modifications of the inner semicontinuity and inner se'micompactness 
notions from Section 3, which an.• ulun· snitable for studying marginal functions. 

Given a set-valued mapping S: X .::::::: } · bt't\\'l'l'll Banach spaces and a function f-L: X ---> 

IR, we say that Sis p-inncr scmJconfm1wus at (.I·. f)) E gphS if for any sequences Ek! 0 

and Xk !':... x with 8,, 11(xk) op 0 tlwre i' a sequence Yk E S(xk) that contains a subsequence 
converging to fl. The mapping S i' said to he 1<-irmcr semicompact at x with S(x) I 0 if 

for any sequences Ek l 0 and .Tk !C. .I· ll'ith [j,. i<(.rkl i' 0 there is a sequence Yk E S(xk) 

containing a convergent subs<'qm'llCl'. Ohsl'rYl' a~ u~wd that we can equivalently put Ck = 0 

if both spaces X and Y an.' Asplund alld 11 i:- lmn'r semkontinuous around :t. 

The following theorem esseut iall.Y im proH< t !11' prt'\" ionsly known result by l\1ordukhovich 

and Shao [21] that established rl'iatioushiJ" IH"t\\·c·t·u tlw singular subdifferential of the 
marginal function J-1 and t lH' non nul l·odni\·<lt in' uf t lw gl'unating mapping in ( 5.1) under 

the inner/lower semicompactness a.ss!JllljJtiOil lJII th~, solt1tiou map. 

Theorem 5.2 (singular subgradients of marginal functions via mixed coderiva
tives). Let F: X =t Y be a closed-ymph rnappmy between Asplund spaces, and let 

(5.2) S(x) := {II E F(x)l!<(x) = .p(x, y)} 

be the solution/minimum map for· the marginal function ( 5.1). The following hold: 

(i) Assume that S is !"-inner scmicontinuous at (i:, y) E gph S and that tp is locally 
Lipschitzian around this point. Then 

(5.3) 
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(ii) Assume that S is !"-inner semicompact at x and that <p is locally Lipschitzian around 
(x, y) for ally E S(x). Then 

800 !-'(x) c U DM-F(x, y)(O). 
jjES(x) 

Proof. To justify (5.3), fix any singular subgradient x* E 000!-'(x) and get by definition 
(2.5) that there are sequences 

Ek 1 0, Ak 1 0, Xk .!!.., x, and x}; E 8,,!-'(xk) 

such that Akx}; ~ :r· as k ~ oo. Since S is !-'-inner semicontinuous at (x, y), we find 
Yk E S(xk) whose subsequence, with no relabeling, converges toy. It follows by definition 
from xj, E 8,,!-'(Xk) that for any T} > 0 there is -y > 0 such that 

(x;;,x- Xk) :0: 11(x) -11(xk) + (o:k + 17lllx- Xkll whenever x E Xk + -ylB. 

Considering the function 

¢(x,y) :~ cp(x,y) + o((x,y);gphF), 

we easily conclude that 

((x};, 0), (x- Xk, y- Yk)) :0: r!J(r. y) - ¢(xk, Yk) + (ck + TJ)(IIx- xkll + IIY- Yklll 

whenever (x, y) E (xb Yk) + -ylB, which gives (x;;, 0) E 8,,¢(xk> Yk). 
Fix now an arbitrary sequence 1Jk 1 0. Since 'Pis locally Lipschitzian around (x, y) while 

X and Y are Asplund, we apply the well-known fuzzy sum rule for c-subgradients of ¢ 
(which follows from Theorem 3.1) and find sequences 

( ) 
'P (- _) ( )gphF( __ ) 

Xlb Ylk - X, y , X2k, Y2k ---+ X, y , 

satisfying the estimate 

or, equivalently, the following ones: 

(5.4) 

Let f > 0 be a Lipschitz constant for 'P around (i,y). Then ll(x;k,Yiklll S £,which 
implies that >.kil(x;k, Yik)ll ~ 0 ask~ oo. By (5.4) we therefore have 

(5.5) 

Taking into account that 
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and using the definition of the mixed coderivative (2.7), we derive from the convergence 
relations (5.5) that x• E D'MF(x, y)(O), which gives (5.3) and completes the proof of (i). 
The proof of assertion (ii) is similar with using the J.L-inner semicontinuity condition for S 
instead of the J.L-inner semicompactness one in (i). 6 

Combining now the• results obtained in Lemma 5.1 and Theorem 5.2, we establish refined 
sufficient conditions fur the local Lipschitz continuity of marginal functions. 

Theorem 5.3 (Lipschitz continuity of marginal functions). Let F: X =t Y be a 

closed-graph mappi11y between Asplund spaces generating the marginal function f.' in (5.1). 
The following assertums hold: 

(i) Assume that the solutwn mapS in (5.2) is J.L-inner semicontinuous at (x, y) and that 

the cost function <p i., locally L1psch1tzian around this point. Then I' is Lipschitz continuous 

around x provided that d IS l.s.c. amund i and that F is Lipschitz-like around (x, y). 
(ii) Assume that S 10 f.J,-171711'1' sermcornpact at x and that <p is locally Lipschitzian around 

(x, y) for every fiE 5("'). Then 11 1s Llpschitz continuous around x provided that it is l.s.c. 

around this point and that F 1s Lipschitz-like around (x, y) as fiE S(x). 

Proof. It is sufficient to justify (i): the proof of (ii) is similar. We have Dfl.1F(x, fi)(O) = {0} 
by Theorem 2.1(ii), since• F is 'c"unwd to be Lipschitz-like around (x, y). Thus 800 J.L(x) = 

{0} by Theorem 5.2. Ilc· the· com·c•rse statt·ment of Theorem 2.1(ii), it remains checking 
that 1-' is SNEC at x to ensun• the Lipschitz continuity of I' around this point. Employing 
the SNEC characterization fro:n LPmma 5.1. we take any sequences Ak l 0, Xk ~ X, and 

~ u·· 
xk E >.kBJ.L(Xk) such that .r;. ~ 0 ask ~ x. To finish the proof, we need showing that 

llxk II -> 0 along some subsequence of k ~ :x:. 

To proceed, use the p-semicontinuit)' of S from (5.2) at (i, y) and select a sequence of 
Yk E S(xk) whose subsequence comwges (with 110 relabeling) toy. Take xk E 0f.J,(x,); " 
that xk = AkXk. Similarly tu the proof of Theorem 5.2. hnd sequences 

- gph F _ _ 
(XJk,Yik).:.., (i.y). (.r"k·.IJn) ~ (J·.y). 

(x;k,y;,) E iJ.,;(.TJk•!ilki· and (.r;,.y;;) E .\'((.r2k.Y2k);gphF) 

(5.6) 

This implies that ,\kiiY2kll-> 0 ask~ •:X:. Taking now into account that 

and that F is Lipschitz-like around (i. :U) with some modulus e > 0, we get from the 
coderivative estimate for Lipschitz-like mappings (see, e.g., [18, Theorem 1.43]) that 
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which implies that ,\k[!.r2kll --> 0. Combining the latter with (5.6) and with xi,= ,\kx;;, we 
conclude that llxi;ll - 0 as k --> oo. This justifies the SNEC property of 1-' at x and thus 
completes the proof of the theorem. /':, 

It is not hard to check that the l.s.c. property of the marginal function assumed in 

Theorem 5.3 automalll'ally holds if the J-L-inner semicontinuity/semicompactness condition 
on S is imposed ar0111ul the reference points. 

In some applicat i· Ill:-- uue needs to consider a more general version of the marginal 

function (5.1) given"' 1lw form 

(5.7) p(.r. y) := inf { <p(y, z)l z E F(x)} 

with <p: Y x Z--> lR '""IF: .\ =-~ Z. This particularly covers the class of distance functions 

to varying/moving sc·h d,·filled IJ\' 

(JI.r.yl = inf {1:.11- zlll z E F(x)} 

whose subdifferential n11d Lipschitzian properties have been recently studied by Mordukhovich 

and Nam [19] at both i11-sct ami unt-uf-set points: see also the references therein. Now we 
present the corresponding results for (5.7) obtained from Theorems 5.2 and 5.3. For brevity, 

consider only the Hinner semicuutiJIIJOtl!:t version of these theorems. 

Corollary 5.4 (singular subgradients and Lipschitzian continuity of generalized 
marginal functions). Let 'P' }'" Z- lR and F: X =I Z in the Asplund spaces setting, 

and let the solution map 

S(.r,y) := {z E F(J·)ilt(x,y) = <p(y,z)} 

be J-L-inner semicontimwus at some point ((.i· . .Q). z). Assume also that <p is locally Lips

chitzian around (ii, z) and that F '" closul-ymph amund (.f. z). Then 

Moreover, J.1 is Lipschitz-contmuou.~ nmund {./'. ,ij) if II 1s l.s.c. around this point while F is 

Lipschitz-like around (.1'. z). 

Proof. Put u := (x, y) and <h•Hm• 

- -
F(u) = F(x.y) := F(.r). ;:'(u.:) := '(:(y.z). 

Then we have the representation 

(5.8) J-L(x, y) = J-L(u) = inf { iJ(u, z)l z E F(u) }. 

Applying Theorem 5.2 with (x, ii) replaced by (u, z) = (x, y, z), we get 
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It is easy to observe the inclusion 

DAJ;;((x,y),z)(O) c {(x',O)I x' E DMF(x,z)(O)) 

Summarizing all the above, we arrive at 

Oocf"(x,y) c {(x',O)I x' E DMF(x,z)(O)). 

The conclusion about the Lipschitz continuity of I" around (x, y) follows directly from The

orem 5.3 applied to {5.5). 6 

Observe that the generating map F(-) in {5.1), and similarly in {5.7), describes the sets 

of feasible solutions to the parametric optimization problem: 

{5.9) minimize <p(x, y) subject to y E F(x). 

A general framework for describing feasible sets F(x) in most applied problems is as follows: 

(5.10) F(x) = {y E Yl g(x,y) E /1., (x,y) E rl}, 

where g: X x Y--> Z, /1. C Z, and !1 C X x Y. Systems of type (5.10) are usually called 
parametric constraint systems. In particular, model (5.10) can be treated as an extension 
of the feasible solution sets in parametric problems of nonlinear programming with equality 

and inequality constraints given by 

F(x) = {v E Yl c,o,(:r. y) :S 0 for i = 1, ... ,m, 
<p;(J·.y)=O for i=m+1, .. ,m+r). 

Another important special case of (5.10) is 

F(x) = {y E Yl g(x,y) = 0}, 

which describes implicit functionsjmultifunctions. 

Furthermore, the general framework of (5.1) is useful for modeling sets of optimal so

lutions to lower-level optimization problem!:i and also solution sets arising from parametric 

complementarity conditions and variational inequaliticti. In such cases, the sets F(x) are 

usually given in the form of parametric generalized eqHations (or variational conditions) in 

the sense of Robinson [28]: 

(5.11) F(x) = {y E Yl 0 E f(.r. y) + Q(.L Y)} 

with f: X x Y--> Z and Q: X x Y =I Z. When. in particular, Q(y) = N(y;rl) is the 
normal cone mapping to a convex set, model ( 5.11) describes solution maps to the classical 
parameterized variational inequalities. 

Having this in mind, one may treat the marginal function (5.1) with the generating 
mapping F(x) given in form (5.11) as the value function in a mathematical program with 

equilibrium constraints (MPEC): see Facchinei and Pang [6] for more examples and dis

cussions. Thus, to make a conclusion on Lipschitz stability /continuity of value functions 
in parametric optimization problems of type (5.9) with constraint sets (5.10) and/or in 
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MPECs and related problems with constraints sets of type (5.11), we actually need-by 
Theorem 5.3-to check the Lipschitz-like property of mappings F(x) given by (5.10) and 
(5.11). Concerning the latter issue, we refer the reader to Chapter 4 of the book by Mor
dukhovich [18], which contains calculations/estimates of coderivatives for systems (5.10}, 
(5.11), and their specifications together with verifiable conditions for their Lipschitzian sta
bility in terms of the initial data in both finite-dimensional and infinite-dimensional settings. 
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