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Robust Lipschitzian properties of set-valued mappings and marginal functions play a crucial role in
many aspects of variatioral analysis and its applications, especially for issues related to variational
stability and optimization. We develop an approach to variational stability based on generalized
differentiation. The principal achievements of this paper include new results on coderivative calcu-
lus for set-valued mappings and singular subdifferentials of marginal functions in infinite diinensions
with their extended applications to Lipschitzian stability. In this way we derive efficient conditions
ensuring the preservation of Lipschitzian and related properties for set-valued mappings under var-
ious operations, with the exact bound/modulus estimates, as well as new sufficient conditicns for
the: Lipschitz continuity of marginal functions. ‘
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1 Introduction

Variational analysis has been well recognized as a fruitful area in applied mathematicy deal-
ing, first of all, with optimization-related issues while also applying variational principles
and approaches to a large spectrum of problems. which may not be of a variational nature.
We refer the reader to the books by Rockafeilar and Wets [30], Borwein and Zhu (3], and
Mordukhovich [18] for the key developments on basic theory of variational analysis and its
numerous applications including those to various topics in.operations research. Since nons-
mooth functions, sets with nonsmooth boundaries, and set-valued mappings naturally and
frequently arise in optimization-related problems and variational techniques, the qualitative
and quantitative aspects of generalized differentiation lie at the very heart of variational
analysis and its applications.

This paper mainly concerns developing a generalized differential approach to variational
stability, which is understood here from the viewpoint of robust Lipschitzian behavior of
set-valued mappings and marginal functions preserved under perturbations of the initial
data. Indeed, such a robust Lipschitzian stability plays a crucial role in many aspects of
variational analysis and optimization, especially those related to sensitivity of feasible and
optimal solution sets under parameter perturbations; see the afore-mentioned books and



also the ones by Bonnans and Shapiro [2] and by Facchinei and Pang [6] with the extended
bibliographies therein. .

The main single tool of our analysis is the construction of coderivative (adjoint deriva-
tive) for set-valued mappings introduced by Mordukhovich [13] and then developed and
applied in many publications; see, e.g., Borwein and Zhu [3], Dontchev, Lewis and Rock-
afellar 5], Joffe [7], Ioffe and Penot [8], Jourani and Thibault [9, 10], Levy and Mordukhovich
[11], Mordukhovich [14. 15, 16, 17, 18], Mordukhovich and Shao {21, 22, 23], Outrata [25],
Penot [26], Rockafellar and Wets [30], Thibault [32], Treiman [33], Ye and Ye [35], Ye and
Zhu [36], and the refcercnces therein.

1t is well known (see Mordukhovich [14] and Rockafellar and Wets [30]) that robust
Lipschitzian behavior of set-valued mappings F: X = Y between finite-dimensional spaces
X and Y can be completely characterized by using the normal coderivative of F' at the
reference graph point (. g) € gph £ detined by

(1.1) NEE o) = {r e XT

(x*. ~y*) € N((Z,7); gph F}}

via the nonconvex normal cone introduced by Mordukhovich [12]. In infinite-dimensional
spaces X and Y, coderivative constructions of type (1.1) do not provide anymore charac-
terizations of Lipschitzian stability. Such characterizations of the classical Lipschitz con-
tinuity and its proper set-valued counterpart. known as the Aubin “pseudo-Lipschitzian”
(or Lipschitz-like) property, were established in Mordukhovich [16] and Mordukhovich and
Shao [23] involving the so-called mired coderrvative D3, F{Z,§), which is generally different
from {1.1) in infinite dimensions: see Section 2. Moreover, the usage of both normal and
mixed coderivatives provides two-sided estimates of the exact bounds for Lipschitzian mod-
uli, which give precise formulas to compute the exact bounds under certain coderivative
normality conditions; see Mordukhovich [17. 18]

In this paper we develop new results of coderivative calculus that, being combined wiui
the afore-mentioned characterizations. allow us to ensure the preservation of robust Lip-
schitzian stability under various compositions of set-valued mappings, together with rela-
tionships between the corresponding exact Lipschitzian bounds. As consequences of these
results, we derive efficient conditions for preserving the related metric regularity and open-
ness/covering propertics of set-valued mappings under compositions, with relationships be-
tween their exact bounds. :

The usage of mixed coderivatives allows us to establish also new upper estimates for
singular subgradients of the so-called margmal functions of the type
(1.2) pir) = inf e g)

ys Fir
generated by a set-valued mapping £: X = Y between Banach spaces and an extended-
real-valued function ¢: X x ¥ — IR := (~5c.>c]. Functions of this type are intrinsically
nonsmooth and highly important in the theory of variational analysis and its numerous
applications, particularly to optimization and control, where they are often called the value
functions (and also as the Hamilton-Jacobi-Bellman-Isaacs functions in the caleulus of vari-
ations, optimal control, and differential games): see, e.g.. Clarke et al. [4], Rockafellar and



Wets [30], Vinter [34]. and the references therein. Based on the refined upper estimates ob-
tained and on subdifferential characterizations of the classical Lipachitz continuity that goes
back to Rockafellar {29! in finite dimensions, we derive new efficient conditions ensuring local
Lipschitz behavior for 1l general class of marginal functions (1.2) and their modifications
in the case of infinite-dimensional spaces; this is undoubtedly needed for many applications.

The rest of the paper is organized as follows. Section 2 reviews preliminary material
from variational analvsi~ and generalized differentiation widely used to derive the main
results in the subsequ« 11 sections.

Section 3 is devorei 1o coderivative caleulus. The maln result here is a new chain rule
for mixed coderivatives of compositious we label as zero chain rule. In contrast to general
coderivative chain rule- tor hoth normal and mixed coderivatives, which inevitably require
the usage of the norvidl coderivative for inner mappings in compositions, the new result
applies only to mixed coderivarives of compositions at zero value y* = 0 of the coderivative
argument. But this is exact]y what we need for applications to robust Lipschitzian stability!

The main topic of Seetion 4 is the proservation of robust Lipschitzian stability (with
the corresponding calculus for the exact bounds) under various operations on set-valued
mappings. Despite its undoubted Linportance. this topic has not drawn much attention in
the literature; some results are available in the book by Rockafellar and Wets [30] in finite
dimensions and will also appear in the book by Mordukhovich [18] in infinite-dimensional
spaces. We derive refined conditions in this direction for fairly general settings based on the
mentioned coderivative criteria for Lipschitzian stability and on the special zero calculus
results established in Section 3. In contrast to finite dimensions, the infinite-dimensional
consideration requires the usage of the recently developed caleulus of sequenticl normal
compacitness, by which we mean results on preserving certain compactness-like properties
in variational analysis unavoidably necded in infinite-dimensional spaces; see Section 2.

The concluding Section 5 is devoted to the studyv of marginal functions of type (1.2) as
well as their extensions covering. in particnlar. the distance function to moving sets. The
principal new relationship established hetween the singuler subdifferential of (1.2) and the
mized coderivative of the generating mapping F is obtained in the form

(1.3) o utayc | {1 s D;;F{.P.;j)(o)}

PERIFS

provided that ¢ is locally Lipschitzian. where
(1.4) S(x) = {y € i"{_.r)i i = ;l.r.y)}

stands for the minimum /solufion map 1o the parameterized optimizaticn problem in (1.2).
Inclusion (1.3) improves previously known results of this type. where D5, is replaced by the
normal coderivative (1.1). Based on (1.3), we derive new conditions ensuring local Lips-
chitz continuity of marginal functions via the mixed coderivative of the generating mapping
F. Taking into account the well-developed calcutus for mixed coderivatives, this allows us
to establish efficient results for Lipschitz continuity of marginal/value functions in specific
classes of parametric optimization problems, where F(z) describe (moving) sets of feasi-
ble solutions. It covers, in particular, mathematical problems with equilibrium constraints



(MPECs) corresponding to F(r) arose as solution sets to lower level optimization problems,
or-more generally—to parametric variational inequalities and complementarity relations.

Throughout the paper we use standard notation of variational analysis and generalized
differentiation. Given a set-valued mapping F: X = X* between a Banach space X and
its topological dual X~ denote

© Limsup F(r) = {;r‘ € X*| 3 sequence zp — I and zj 2z

z—T

with 2 € F(zg) for all k€ IV}

the sequential Painlevd- Kuratowski upper/outer limit with respect to the norm topology of
X and the weak* topology of X*, where IN := {1,2,...}. Recall that the norm of any
homogeneous multifunction £: X = Y is defined by

[ FIl = sup {lyll| y € F(z) and |jz[| < 1}.

2 Preliminaries

This section mostly contains some preliminary material on generalized differentiation widely

used in what follows. We refer the reader to the book by Mordukhovich [18] for more details

and discussions. Unless otherwise stated, all the spaces under consideration are Banach.

As usual, IB and IB* stand for the closed unit balls of the space in question and its dual.
Given 2 C X and £ > 0, define the collection of e-nermals to £ at € 1 by

*

. r.r -7
Himsup <—|—————> < 5}1

—~

(2.1) Ro(#:9) = {T € X

0 flr — I”
I—rx

where z 2 7 means that z — 7 with z € (. When ¢ = 0, the set ﬁ(f;Q) = ﬁg(f;ﬂ) in
(2.1) is a cone called the prenormal cone or the Fréchet normal cone to {2 at I.

The basic/limiting normal cone N{7:Q} is obtained from N.(x; ) by taking the sequen-
tial Painlevé-Kuratowski upper limit in the weak™ topology of X* as
(2.2) N{(%: ) := Limsup N (),

a
T—1

£10

where one can put £ = 0 when £ is closed arcund T and the space X is Asplund, ie,
a Banach space whose separable subspaces have separable duals. This class of spaces is
sufficiently large including, in particular, every reflexive space; see, e.g., the book by Phelps
[27] for more information and references.

Let ¢: X — IR be an extended-real-valued function finite at . The set

(2.3) Bep(z) = {;1:' € X7| liminf wlr) —wlz) - 0o - 8) > YE}

i (A
is called the (Fréchet-like) e-subdifferential of ¢ at . The basic/limiting subdifferential of
. at T is defined by

(2.4) Hp(Z) = limsup cicp(:r;),

> -
s id

)0
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where z % % means that  — % and o{z) — ©(Z). Note that §Eap can be replaced by
By = 8y in (2.4) when X is Asplund while ¢ is lower semicontinuous (l.s.c.) around Z.
Let us mention an equivalent geometric definition of the basic subdifferential {2.4) by

Brir) = {a* € X*| (2*,-1) € N{(Z,(7));epi @) }

via the epigraphical ~ct epi g = {{r. p) € X x IR| p 2 (z)}.
The singular subd:fii rential of 22 X — R at & is defined by

(2.5) &> 2(F) = Limsup )\55(,0(1‘).

.Ti'i‘

=.A10

This construction makes sense only for non-Lipschitzian functions, since 8%¢(Z} = {0} if ¢
is Lipschitz continucus arvund . Note that £ > 0 can be omitted in (2.5) if X is Asplund
and ¢ is Ls.c. around .

Let F: X =Y be a set-valusd mapping between Banach spaces with the graph

gph F o= {y) e X xY|ye Fla)}.

The normal coderivative D\ F(r. g1: Y™ = X* of F at (Z,7} is defined by

(2.6) DyFlr gyt = {2 XL (@7 —y™) € N{(z,9); gph F) }

and the corresponding mired coderivative is

= = * e ; Wi % ! * *
DR F@D ) = { 7 X7 2 e 0 o) ™ (20), 2y 2w,

(2.7) . .
gr — y  with (o —yi) € :’\’s*((rmyk);gphF)},

NP . A I
where % signifies the weak™ scquentral conversence in X7, while -4 stands for the norm
convergence in the dual spuce: we omit | -1 i what follows. Oune can put £ = 0 in (2.7) if
X and ¥ are Asplund and if the graph of # s closed around (F.4). Clearly

D F@ogny o DVF Gy forall g-e s,

where the equality obviously holds if din} < oo, while the inclusion may be strict in
any infinite-dimensional space Y even for Lipschitz continuous and Fréchet differentiable
mappings on R, The equality

D3 F (.l = [IDYFE

defines the class of coderivatively normael mappings F at (7. §). This class is rather large (see
sufficient conditions presented in Mordukhovich {17, Proposition 3.2} and in Subsection 4.2.1
of the afore-mentioned book) particularly including all strictly differentiable mappings,
convex-graph mappings, and the so-called strictly Lipschitzian mappings on Asplund spaces.
The latter notion for locally Lipschitzian mappings f: X — Y into infinite-dimensional
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spaces was defined by Mordukhovich and Shao [20] via the existence of a convergent subse-
quence for any sequence in the form

flzr + tyv) — flzg)
t

as xp — % and # |0

whenever v belongs to some neighborhood of the origin in X, but it happened to be equiv-
alent to the major version of “compactly Lipschitzian” mappings introduced and studied
much earlier by Thibault [31].

One of the most fundamental differences between variational analysis in finite and infi-
nite dimensions, crucial for many aspects of generalized differentiation and optimization, is
the necessity of imposing additional compactness-like requirements in infinite-dimensional
settings that ensure nontriviality while passing to the limit in the wesk* topology. In this
paper we use the following general properties that are automatic in finite dimensions, hold
for “reasonably good” sets and mappings, and are preserved under various operations.

A set 0 is sequentially normally compact (SNC) at F if for any sequences ¢, | 0, zy Lt I,
and z} € ﬁek(mk;ﬂ} one has

22 5 0] = [lzfll = 0] as k — oo,
where € can be omitted if X is Asplund and if € is locally closed around Z. The SNC
condition is automatic when Q satisfies the so-called “compactly epi-Lipschitzian” property
in the sense of Borwein and Strojwas, particularly when it is convex and finite-codimensional
with nonempty relative interior.

A set-valued mapping F: X = Y is SNC at (£,¥y) € gph F if its graph enjoys this
property. For the case of mappings, a more subtle partial SNC (i.e., PSNC) property can
be defined. We say that F is PSNC at (F,§) if for any sequences g; | 0, {zg, yx) BphF {Z,7),
and (z},y;) € ]’\\Tsk({xk, yx): gph F) one has

[ef % 0. fiytll — 0] == [lla1li — 0] as k — oo,

where €, = 0 in the Asplund space and closed graph setting. The PSNC property always
holds when F is Lipschiiz-like around (r.§) in the following sense of Aubin [1]: there exist
neighborhoods U of ¥ and V' of § as well as modulus > 0 such that

(2.8) FluynV ¢ F(v) + (Jlu — v|| B whenever u,vel.

This reduces to the classical (Hausdorft) local Lipschitzian behavior of F' around Z corre-
sponding to V =Y in (2.8). The infimum of all Lipschitzian moduli ¢ in (2.8) is called the
exact Lipschitzian bound of F around {Z,§) and is denoted by lip F(Z, §).

The Lipschitz-like property of F around {z,§) is known to be equivalent to the metric
regularity and covering/linear openness properties of the inverse mapping F~! around (7, 7),
with the exact bound relationships

(2.9) reg F~1(g,2) = cov F~1(§,2)7" = lip F(Z, 7).

These three equivalent properties play a fundamental role in many aspects of nonlinear
analysis, especially those related to eptimization.



An extended-real-valued functions ¢ on X is sequentially normally epi-compact (SNEC)
at F if its epigraph is SNC at (%, w(Z)). This property always holds for locally Lipschitzian
functions and their appropriate extensions.

Finally in this section, we formulate two fundamental results of variational analysis that
give coderivative/subdifferential characterizations of robust Lipschiizian properties for set-
valued mappings and extended-real-valued functions, respectively. These results form the
basis for developments-in this paper.

Theorem 2.1 (coderivative/subdifferential characterizations of local Lipschitz
continuity). Let the spaces under consideration are Asplund. Then the following hold:

(i) A closed-graph mapping F: X = Y is Lipschitz-like around (Z,§) € gph F if and
only if D3 F(Z,9)(0) = {0} end F is PSNC at (Z,7). In this case

PDY ELE ) < lip F(7,§) < |1 DVEE, D)

for the exact Lipschitzian bound of F around (Z,7), where the upper estimate is fulfilled
when dim X < oo. Thus

lip F(r.g) = | Dy F{x. 9 = | Dy F(Z, D)

if in addition F is coderivatively normal at (T,7).
(ii) A Ls.c. function »: X — IR finite at T 4s locally Lipschitzian around % if and only
if 8p(Z) = {0} and [ is SNEC ui this pont.

3 Coderivative Calculus

In this section we derive a new zero chamn rule for mixed coderivatives and present some of its
useful subsequences. Let us start with the formulation of a fuzzy sum rule for e-coderivai s
of set-valued mappings F: X == Y at {F.7) € gph F defined by

DiF@. gy ) = {r € X' (s ~y") € No((7. jhgph F)}

via the set of e-normals given in (2.13. The foillowing result. used in the proof of the main
theorem in this section, is a simplification of a wore yeneral fuzzy rule for e-coderivatives
established by Mordukhovich and Shao {22].

Lemma 3.1 {fuzzy sum rule for s-coderivatives). Lef X and Y be Asplund spaces,
let F;: X =2Y,1i=1,2, be set-valued mappings, and let = > 0. Fig

§E(Fi+F)&) with j=§i+ 2 and j, € F(7) as i=1,2

and assurne that either F| is Lipschitz-like around (7. ). or Fy is Lipschitz-like around
(Z,%2). Then for every x* € DI (F) + F2)(F,4)(y") and every n > O there are

(zi,1) € gph Fi N [(:E,g;) + nlB] and o) € ﬁ'f“,(.r,,y;){y;), i=1,2,
satisfying the estimates

g7 ~ vl Se+n and fla* — 2] -2 Se+n.



Recall that a set-valued mapping §: X =Y is inner semicontinuous at (I, ) € gph § if
for every sequence x; — Z with S{zy) # 0 there is a subsequence of y, € S(z;) converging
to j as k — o0o. The mapping S is inner semicompact at  with S(Z) # @ if for every
sequence o — T with S{z,) # B there is a sequence y, € S(zx) containing a convergent
subsequence.

Now given two sci-valned mappings G: X = ¥V and F: X x Y = Z, consider their
general composition ouiined hy

(FeG)z):= | Fla.y).
yeGix}

Theorem 3.2 {zero coderivative chain rule for general compaositions of set-valued
mappings). Fir Z ¢ /= GWF) and assume that the mappings F and G are closed-graph
around the reference imnnts wud that the spaces X, Y, and Z are Asplund. Define

Sirozi={y e Gy = € Flr,y)}.

(1) Suppose that S s e r scmcontinuous at ((T.2), §) € gph S and that F is Lipschitz-
like around ((Z,%),2). Then

DifFoG)a 3){0) € {7 € X~

z* € Dy CE PO},

(ii) Suppose that S is inner semucompact at (Z,Z) and that F is Lipschitz-like around
((Z,9),2) forallg e S(z,2). Then

Dy (FoG)z. 20 c {rex*

yES(r.e)

r* € DyG(5,7)(0)}.

Proof. It is sufficient to justify assertion {i). since the proof of (ii) is similar. Define the
auxiliary mapping

(3.1) Hir. y):= Flr.oy)+ A{eyhgph &),

where the set indicator mapping M- (1) is given by M) = 0if w e Qand A{w; Q) := 0
otherwise. Fix an arbitrary element »* € DY F e G)(F.2)(0) and, using definition (2.7 ) of
the mixed coderivative. find ¢4 | 0. rp — I 5 — 50 0] o, z*, and z; — 0 (converging
by norm) as k — oc such that

(3.2) zp € (FoG)(ry) and (w}. -z € .\ﬁ':-A (lrp. 2 igph{(Fo G)), ke N

Since S is inner semicontinuous at (. 3). 7). find y £ S{re. z) whose subsequence con-
verges (without relabeling) to some . We have j € S(7. 2) by the closad-graph assumptions
of the theorem. It is casy to observe from (3.2) that

(25,0, ~z) € Ney (@i ya 21 )i gph H) <= (1}.0) € D; H(rkoye, 26)(2), k€ NN,

by the construction of e-coderivatives. Taking into account the sum structure of the mapping
H in (3.1) and using Lemma 3.1 along a fixed sequence 1 | 0, find

((z1k, y1k)s 216) € gPHF. (205, yax) € gPh G, (274,07,) € D Fz1h, yiks 21 )(20))
and {23, 5.} € N{(@ok.yor)igph G) as ke IV
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satisfying the estimates

{1k, yiks 21k) — (s w201 < ey {1k, war) — @k w )l £ ey
(x5, 0) = (234 wik) — (@op Yol <k + ey 21 — 22l < €k +
Since ||z;|| = 0 and ||z}, - 2}|| < € + 7%, we have ||2},]| — O as k -+ co. The Lipschitz-like

assumption on F' ensures, by Theorem 2.1(i), that F' is PSNC at ((z, %}, Z), which implies
that ||(z}, ¥7%) || = 0. Combining this with

ot — @3 = ol S e+ My 10he + vaell < €+, and 2 o ¥,

we conclude that x3, “ 9 and |yl — 0 as k — oo, and thus «* € D}, G(z, 7)(0). This
completes the proof of the theorem. A

Theorem 3.2 immediately applies, without any change, to standard compositions of
set-valued mappings when F = F(y). and also to special cases of single-valued mappings
in compositions. Let us present its corollary for the case of single-valued inner mappings
G = g: X — Y when the inner semicontinuity assumption in (i) holds automatically.

Corollary 3.3 {zero chain rule with single-valued inner mappings). Under the
general assumptions of Theorem 3.2, suppose that g: X — Y s continuous around T while
F:Y = Z is Lipschitz-like around (g9{®). 7). Then

D}y (Fog)(z.5)(0) C {a* € X*| 2" € Diyg(2)(0)}.

Another corollary of Theorem 3.2 concerns the so-called reversed mized coderivative of
Fi: X =Y at (£,7) € gph F defined by

Dy F(2,5)(y") = {z" € X

y e Dy FTIG E)(-2"),

which is convenient for characterizing the metric regularity and covering/openness prop-
erties; cf. Mordukhovich [16], Mordukhovich and Shao {23}, and Penot [26]. The result of
Theorem 3.2 allows us to derive a useful relationship for the kernel

ker D}, F(z,y) = {y" € Y| 0 e D}, F&.5)(y")

of the reversed mixed coderivative under compositions.

Corollary 3.4 (kernels of reversed mixed coderivatives under compositions). Let
Z€ (FoG)T), where G: X = Y and F:'Y = Z are closed-graph mappings between
Asplund spaces. Assume that the mapping S(x.z) 1= G(x) N F~Yz) is inner semicompect
at (Z,Z) and thaet G is metrically regular around {Z,§) for all §j € S(Z,%). Then

ker Dy (FoG)(#2)C | ker D}, F(g,2).
§eS5(z,z)



Proof. Fix z* € ker ﬁ:{f(F o GYZ,Z) and use the identity
(FoQ) =g loF L

Then the relation G € f)L(Fo G)(Z, £)(2") is equivalent to —z* € D}, (F o G)"1(Z,%)(0).
Since the metrie regularity of G around (%, 7) is equivalent to the Lipschitz-like property of
G~! around (7, &), we et from Theorem 3.2 that

-7 € DYy FTHE p)0) for some § € S(7,2).

This gives 0 € 5}41’ G.3)z7). and thus 27 € ker ﬁ;,fF(g, #), which completes the proof of
the corollary. A

4 Robust Lipschitzian Stability

This section concerus caleulus of Lipschitzian stability by which we understand efficient
conditions ensuring the preservatfion of robust Lipschitzian properties under various op-
erations. As usual, we payv the main attention to the general Lipschitz-like property of
set-valued mappings. The calculus/preservation results established for this property easily
imply the corresponding results for the classical local Lipschitzian property, as well as for
metric regularity and covering via inverse mappings. Observe that we also obtain relation-
ships far the corresponding ricct bouwnds under various compositions.

Our first result in this scction cusures the preservations of the Lipschitz-like property
under general compesitions of set-valued mappings.

. Theorem 4.1 (Lipschitz-like property under general compositions). Considering
closed-graph mappings F: X xY = Z and G: X = Y between Asplund spaces, lake a
point Z € {F o G)(T) such that pph (F 2 &) s locally closed around (F,2) and define

Sio.z)y =y Gz e Fleg

Then the composition F'oG s Lipschiz-lik around (i, 33 e cach of the following two cases:
(1) S is dnner semicontmuous at (LF. 24 i) aph S0 F s Lipschitz-like around ((T, ), Z),
and G is Lipschitz-like eround {7y}
(ii) S is tnner semicompact at (F. 2}, and for veery y € S5(T,7) the mapping F is
Lipschitz-like around ({T,3). 2) while G is Lipschitz-like around (Z, §).

Proof. It is sufficient to justify (i) ohserving that the proof of (ii) is similar. Since G is
Lipschitz-like around (I, ), we get from Theorem 2.1(i) that D},G{Z,§)(0) = {0}. The
new zero chain rule from Theorem 3.2 allows us to conclude that D}, (FoG)(Z, 2)(0) = {0}.
Thus, by the characterization of Theorem 2.1(i), it remains to check that the composition
FoGis PSNC at (7,2).

To proceed, we take any sequences (xy, zg, Ty, zf ) such that {zy,z) — (Z,2), =}, LA 0,
|25l — 0 as k — o, 2 € (F o G){xy). and

(4.1) (xr.~z}) € N{(r4.2;):8ph (F o &) forall ke i |

10



observe that we omitted g, | 0 in comparison with the general definition of the PSNC
property, since the spaces X x Z are Asplund and the graph of F o G is locally closed.
By the inner semicontinuous assumption on § at ((Z,%),9), we get yp € S(xk, 2x) such
that y, — 7 along a subsequence still labeled {y,}. Then arguing similarly to the proof of
Theorem 3.2 with the usage the coderivative fuzzy sum rule from Lemma 3.1, fix oy | 0 and
find by (4.1) some sequences

sph o _ hG ,_ _
(42) (Ilk!ylk: Zlk) _h_—} (:c,y,z), (IQE)ka) L (SC,y

),
(@30, U1) € D" Flzie, yies 216 ){28,), and (25, v5.) € N{{zak, yor ); gph G)

satisfying the estimates

(4.3) (2%, 0) = (21, yik) — (w0 2 )ll < e and (|23, — 2] < 7.

It follows from (4.3) that |lz], ]| — 0. By the PSNC property of F' implied by its assumed
Lipschitz-like property, we get from (4.2) that ||(z},,¥1.)l — 0. Then (4.3) yields that
lyaell — 0, and hence the Lipschitz-like property of G ensures by (4.2) that |lz7, }i — 0.
This finally gives by (4.3) that ||z}]| — 0, which justifies the PSNC property of ¥ ¢ G and
completes the proof of the theorem. JAN

Theorem 4.1 astomatically applies to the standard compositions of set-valued mappings
with F' = F(y). The next result gives more: it establishes a calculus rule for the ezact
Lipschitzian bounds under some additional assumptions.

Theorem 4.2 (Lipschitzian bounds under compositions). Let G: X =3 Y and
F:Y = Z be closed-graph mappings between Asplund spaces. Fiz £ € (F o G}{(T) such
that gph (F o G} is locally closed around (T, ) and form the mapping S(z, z) as in Theo-
rem 4.1. The following assertions hold:

(i) Assume that § is inner semicontinuous at ((%,2),7) € gph§. Then the composition
F oG is Lipschitz-like around (%, Z) provided that G is Lipschitz-like around (%, §) and that
F 45 Lipschitz-like around (3, z}. If in addition dim X < oo and the mappings G and F are
coderivatively normal at (Z,7) and (g, Z), respectively, then

(4.4) lip(FoGNZ, 2) <lipG(Z,7) lip F(7, 2).

Z). Then Fo G is Lipschitz-like around

(ii) Assume that S is inner semicompact at (I,
(Z,7) and F is Lipschitz-like around (§,%)

(Z,%) provided that G is Lipschitz-like around
for all § € S(F,%). Moreover, one has

(4.5) lip(FoG)(7.2) < _élsl'?;ﬂ,)lipc(f-ﬁ) -lip 7(7, %)
geS(E.:z

if in addition dim X < oc while both G and F are coderivatively normal ot (Z.7) and (g, ),
respectively, for all j € S(%,3).

Proof. First we justify the exact bound formula (4.4) in assertion (i}. It follows from
Theorem 4.5 in Mordukhovich [16] that the chain rule

(4.6) DY FoG)(&,2) (2"} C DNG{Z,5)0 D*F(g,2)(z"), "€ Z",

11



holds for both normal (D* = DY) and mixed (D* = Dj;) coderivatives of Lipschitz-
like mappings between Asplund spaces; observe that the normal coderivative of the inner
mapping G is used in (4.6) in both cases of D* = D}, Dj},. Taking into account the
well-known relationship A

[ Hy o Hall < || Hull - | Hzfl

for the norms of any positively homogeneous set-valued mappings, we derive (4.4) from the
chain rule (4.6) applivd to both coderivatives D* = DYy, D}, and from the bound estimates
of Theorem 2.1(i} held under the assumptions made.

The proof of (4.5} in assertion (ii) is similar. We need to observe ounly that the “max”
in (4.5) is achieved, since the set S{F. Z) is compact in the setting under consideration and
the real-valued functiou lip H{.) is upper semicontinuous on the graph of any Lipschitz-like
set-valued mapping H{-). JAN

It is worth mentioning that the local closed-graph assumptions of Theorems 4.1 and 4.2
automatically bold when both F and & are locally closed-graph and the mappings S therein
are inner semicontinuous/semicompact around the reference points.

The following consequence of Theorem 4.2 specifies its assumptions for the case of single-
valued inner mappings.

Corollary 4.3 (Lipschiizian properties of compositions with single-valued inner
mappings). Let Z € (F o G}, where F: Y = Z is locally closed-graph around (g{(%), Z)
while g: X - Y is locally Lipschitzien around T in the Asplund space setting. Then Fog
is Lipschitz-like around (%, ) prorded that F is Lipschitz-like around {g(Z), Z). Moreover,

lip (F o g)(i.5) < lipg(F) lip Fg(2). )

if in addition X is finite-dimenswonai, g s strictly Lipschitzian at T, and F is coderivatively
normal at (g(Z}, 2}

Proof. To derive this result from Theorem 4020 it rewains to observe that anv strictly
Lipschitzian mapping ¢: X — Y with an Asplund domain space X is coderivatively normal
at the reference point: see Mordukhovicl: (18j. A

The composition results obtained above have manv specifications corresponding to par-
ticular choices of mappings F and . Next we present couditions ensuring the preservation
of Lipschitzian stability under summation of set-valued mappings. For brevity, consider
only the “inner semicompact” case.

Theorem 4.4 (Lipschitz-like property under summation). Let F;: X = Y, 1 =
1,2, be closed-graph mappings between Asplund speces. Tuke § € (F1 + Fo)(E) such that
gph (Fy + Fy) is locally closed around (Z.§) and consider the mapping S: X x Y = Y?
defined by

Sz, y) = {(n.1) € Y|y € Fi(2). y2 € Falz), y1 + 42 = ¥}

12



%)
for

Assume that S is inner semicompact at (Z,7). Then Fy + Fy is Lipschitz-like around (T
provided that Fy is Lipschitz-like around (Z,7) and Fy is Lipschitz-like around (T, J,)
every {(71,%2) € S(Z.5}. Moreover,

(4.7) ip(Fi -+ F2}(Z,9) € max {lip Fi(Z, 51) 4+ lip Fi(z, 1)}
{1.92)€5(2.9)

if X is finite-dimensicnul and each mapping F; is coderivetively normal at (Z,7%:), 1 = 1,2,
for all (gl, ﬂz) € SF. e

Proof. It follows fron. Mardukhovich [16, Theorem 4.2] that the sum rule

(48) D*(Fi+F)inghc | [DRE R+ D R(E 5) )]

L,y SR
holds for both coderivatives 1)* = D3 D3, under the assumptions made. Putting y* = 0
in (4.8) with D* = Dy, we get by Theorem 2.1(i} that
Dy (1 + F){x.9)(0) = {0}

Furthermore, the PSNC property of the sum Fy + Fs follows from the PSNC calculus
result by Mordukhovich and Waung {24. Theorem 3.1j. Thus, by the converse implication of
Theorem 2.1(1), we couclude that Fy + F) is Lipschitz-like at (Z,¥). Finally, using the chain
rule (4.8) for both coderivatives D* = DY.. D}, and the obvious inequality

| Hy+ Hol < [HL A+ ([ Hafl

for the norms of positive homogencous multifunctions, we arrive at the exact bound formula
(4.7) similarly to the proof of Theorem 4.2, YA

Next, give set-valued mappings £, X = Y for/ = 1,2 and : Y1 x ¥y — Z, consider
the so-called h-composition

(F & Fa)(r) = U {ff(.fn-.fi-z)‘ me Fir) pe F?(TC)}

that covers various binary opcrations: see Mordukhovieh - 15] and Mordukhovich and Shao
[21]. The following result eusuring the preservation of Lipsclitz stability under h-compositions,
is 8 consequence of Theorems 4.2 and 4.4

Corollary 4.5 (Lipschitz-like property under h-compositions). Let F,: X =3 Y] for
i=1,2, and let h: Y7 x Yo — Z be mappmys between Asplund spaces. Define 50 X x
Z=3Y) x Yy by

S(z,2) = {(y1.y2) € Y1 x Ya| y, € Fl2), 2 = h{y1,y2)}

. h . ,
and, given Z € (F1 o Fu)(T), suppose that S inner semicompact at (Z,Z). Assume also
thot for every § = (§1,4=2) € S(F.2) the mappings I, are closed-graph and Lipschitz-like
around (Z,§1) end (F,§2). respectively, and that the operation h is locally Lipschitzian

around (§1,42}. Then Fy gF 2 s Lipschitz-like around (7, ).
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Proof. Define F: X = Y1 x Y2 by F(z) := (Fi{z}, Fa(z)) and observe that F' = F+ F,
where Fi(z) = (Fi(2),0) and Fy(z) := (0, Fa(z)}. It follows from Theorem 4.4 that F is
is Lipschitz-like around (%, §) for all § = (71, 52) € S(Z, Z). Since clearly

(L 8 Fy)(z) = (ho F)()

and since h is locally Lipschitzian, we apply now Theorem 4.2 to the latter composition and
thus complete the proof. FAY

Finally, let us derive a useful corollary of Theorem 4.2 that ensures the preservation
of metric regularity and covering properties under compositions with calculus of the corre-
spouding ezact bounds.

Corollary 4.6 (metric regularity and covering properties under compositions).
LetZ e (FoG)(T), where G: X =Y and F:' Y = Z are closed-graph mappings between
Asplund spaces. Fiz Z € (F o G){T) such that gph (F o G) s locally closed around (%, Z).
The following assertions hold: :

(i) Assume that the set-valued mapping S{z,z) from Theorem 4.2 is inner semicontinu-
ous at {(%,2),5). Then FoG is metrically reqular (has the covering property} eround (Z, Z)
provided that G is metrically regular (has the covering property) around (Z,7) and that F
is metrically regular {has the covering property) around (§,%). If in addition dimZ < oo
and both F~} and G™! are coderivatively normal at (2,7]) and {§,T), respectively, then

(i1) Assume that S(x, 2} is inner semicompact at (Z,%). Then FoG is metrically regular
(has the covering property) around (F,Z) provided that G is metrically reqular (has the
covering property) around (Z,y) and that F is metrically regular (has the covering property)
around (§, Z) for every § € S(Z,Z). If in addition dimZ < oo and for every § € S(&,Z)
both F~! and G~ are coderivatively normal at (Z,7) and (7, %), respectively, then

reg (F o G)(F,2) £ max regG(Z.§) - reg F (7, 2),
GES(2.2)
cov(FoG)Z,2) 2 min covG(Z,§) cov F(F, Z).
GeES(I.%)
Proof. It follows from Theorem 4.2 due to the identity (Fo G)™! = G™' o F~! and the
equivalence between the Lipschitz-like and metric regularity/covering properties with the
exact bound relationships (2.9) discussed in Section 2. FAY

5 Marginal Functions

The concluding section of the paper is devoted to studying the local Lipschitzian property
of @rgin AVHIREeMS given by

(5.1)




where ¢: X x Y — TR is a ls.c. cost function and where F: X =2 Y is a generating set-
valued mapping. We have discussed in Section 1 the meaning and scope of applications of
marginal/value functions in variational analysis, optimization, and control.

In this section we develop a subdifferential approach to Lipschitzian stability of marginal
functions based on its characterization established in Theorem 2.1{(ii). The latter result
characterizes the local Lipschitz continuity of (5.1} around Z via the simultaneous fulfillment
of the singular subdiffrrential condition 0®u(Z) = {0} and the SNEC property of p at
Z, provided that p i~ Ls.c. around F and that X is Asplund. First recall the following
convenient subdiffere !l description of the SNEC property for ls.c. functions on Asplund
spaces derived by Mordukhovich and Nam {19].

Lemma 5.1 (subdifferential characterization of SNEC functions). Let X be As-
plund, and let : X - I be an crtended-real-valued function that is Ls.c. around T. Then
w enjoys the SNEC pruperty at 7 if and only if for any sequences xyp — %, M | 0, and
IL‘E € /\k(;;(p(.’.vk} as k € IN one has the nnplication

{1,\ LA 0 = Huf\h — 0} as k — o0,

Our first goal is to establish a relationship between the singular subdifferential of the
marginal function g and the mired coderivative of the generating mapping F in (5.1). To
proceed, define some modifications of the inner semicontinuity and inner sémicompactness
notions from Section 3. which are more suitabie for studying marginal functions.

Given a set-valued mapping 5: X = Y berween Banach spaces and a function g X -»
R, we say that S is p-inner semcontmuous at (#.y) € gph S if for any sequences g; | 0
and xzp £, 7 with 55*,,(1(:1;;;) # ) there is a sequence yy € S{zy) that contains a subsequence
converging to §. The mapping S is said to be y-inner semicornpact at T with S(Z) # 0 if
for any sequences e, | 0 and xp & 7 with 55‘;4.11.) # b there is a sequence ¥y, € S(zy)
containing a convergent subscqguence. Observe as usual that we can equivalently put €, =0
if both spaces X and Y are Asplund aud jis lower semicontinuous around z.

The following theorein essentially improves the previously known result by Mordukhovich
and Shao [21] that established velationships hetween the singular subdifferential of the
marginal function g and the normal coderivative of the generating mapping in (5.1) under
the inner/lower semicompactuess assumption on the solution map.

Theorem 5.2 (singular subgradients of marginal functions via mixed coderiva-
tives). Let F: X =Y be o closed-graph mapping between Asplund spaces, and let

(5.2) S(z) = {y € Fz)| p(x) = p(z.y}}

be the solution/minimum map for the marginal function (5.1). The following hold:
(i) Assume that S is p-inner semicontinuous at {(Z,7) € gphS and that ¢ is locally
Lipschitzian around this peint. Then

(5.3) 8% u(F) C DL, F(,7)(0).

»
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(i) Assume that S is p-inner semicompact at T and thot ¢ is locally Lipschitzian around
(Z,7) for all § € S(Z}. Then

*u@ c |J DiF(E9)0)
ges(x)

Proof. To justify (5.3), fix any singular subgradient z* € 8®°u(Z)} and get by definition
(2.5) that there are sequences

e 10, A L0, 2 5 & and zf € B, p(zk)

such that Azz) 2, 4" as k — oo Since S is p-inner semicontinuous at (Z,7), we find
i € S(z,) whose subsequence, with no relabeling, converges to §. It follows by definition
from z} € O, p(zk) that for any n > 0 there is v > 0 such that

{(ghyx — ap) < plr) — pl{ag) + (ex + )|z — 2]l whenever & € zy + vIB.
Considering the function
d(r,y) = pla,y) + 6((z,y); gph F),
we easily conclude that
(25, 0) (= — 26,y — yi)) € Sz y) — Slzeo yi) -+ (e -+ 0|z — el + |y — weil)

whenever (z,y) € {(zk, yx) + I3, which gives (z},0) € agkgﬁ(:t:k,yk).

Fix now an arbitrary sequence 1. | 0. Since @ is locally Lipschitzian around (Z, ) while
X and Y are Asplund, we apply the well-known fuzzy sum rule for e-subgradients of ¢
(which follows from Theorem 3.1) and find sequences

_ BE ,_ _
ik, 1) 2 (2,7, (Tok, y2e) °2 (2.9),

(e} vii) € Dol@re vai). and (w3, v3,) € N{(zow, yan)gph F)
satisfying the estimate
H(xk, 0) — (e win) — (o v )l] < €x + 1k
or, equivalently, the following ones:
(5.4) llzk — =1 — @2l < e+ and |yl + ya,ll < e + M-

Let £ > 0 be a Lipschitz constant for ¢ around (Z,7). Then |[(z]., y{.)ll < £, which
implies that Agl|(z},, v1) — 0 as k& — oc. By (5.4) we therefore have

(5.5) Mellyae] — O and Agxy, 2Lt as k— 0.
Taking into account that

Ae(@ip, vae) € N((zak, var); gph F) forall ke IN
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and using the definition: of the mixed coderivative (2.7), we derive from the convergence
relations (5.5) that =* € D}, F(Z,7)(0), which gives (5.3} and completes the proof of (i}.
The proof of assertion (ii) is similar with using the p-inner semicontinuity condition for §
instead of the p-inner semicompactness one in (i). A

Combining now the results obtained in Lemma 5.1 and Theorem 5.2, we establish refined
sufficient conditions for the local Lipschitz continuity of marginal functions.

Theorem 5.3 (Lipschitz continuity of marginal functions). Let F: X = Y be a
closed-graph mapping between Asplund spaces generating the marginal function p in (5.1).
The following assertions hold: '

(1) Assume that the solution map 8 in (5.2) is p-inner semicontinuous af [, §) and that
the cost function ¢ is locally Lipschitzian around this point. Then p is Lipschitz continuous
around T provided that it s Ls.c. around ¥ and that F is Lipschitz-like around (Z, 7).

(i) Assume that S is p-mner semicornpact at T and that o s locally Lipschitzion around
(Z,7) for every § € S(%). Then pu ws Lipschitz continuous around & provided thot i is L.s.c.
around this point and that F is Lipschitz-like around (&,§) as § € S(&).

Proof. It is sufficient to justify (i}: the proof of (ii) is similar. We have D3, F(Z, 7)(0) = {0}
by Theorem 2.1(ii}, since F is assumed to be Lipschitz-like around (Z,%). Thus 8% u{Z) =
{0} by Theorem 5.2. By the converse statement of Theorem 2.1(ii}, it remains checking
that g is SNEC at & to ensure the Lipschitz continuity of g around this point. Employing
the SNEC characterization from Lemma 5.1, we take any sequences Ap | 0, o 2N Z, and
z; € Akgu(mk) such that r} Y. 0as k — oc. To finish the proof, we need showing that
|zill = 0 along some subsequence of k — .

To proceed, use the p-semicontinuity of S from (5.2) at {Z,7) and select a sequence of
yr € S(xx) whose subsequence converges {with no relabeling) to §. Take T} € a\u(u) CONT!
that 7 = ApZ}. Similarly to the proof of Theoreni 5.2, find sequences

gph F

(T y1k) = (F.9). (ran. yox)
<

(7. 7).
(T ¥1k) € O{mk yue). and {ri y5.) €

N({(72k, y2x )1 g8Ph F)

such that Ag]|(x],, ¥7.)1 — (0.0) with the estimates

(5.6) 178 — 2l —agll € & and iyl + y3 )l S e as ke IV

This implies that Ag|lys. il — 0 as & — oc. Taking now into account that
(AkTog: Aklsk) € ﬁ((:rgk.ygk):g])h F) e Ay € B’F(mgk,ygk)(-)\kygk)

and that F is Lipschitz-like around (Z.§) with some modulus ¢ > 0, we get from the
coderivative estimate for Lipschitz-like mappings (see, e.g., [18, Theorem 1.43]} that

Azl < €l Acyzell for large k € IV,
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which implies that A;|lz3, | — 0. Combining the latter with (5.6) and with z} = Az}, we
conclude that ||zf]] — 0 as & — oco. This justifies the SNEC property of x at Z and thus
completes the proof of the theorem, A

It is not hard to check that the ls.c. property of the marginal function assumed in
Theorem 5.3 automaiically holds if the p-inner semicontinuity /semicompactness condition
on S is imposed areund the reference points.

In some application= one needs to consider a more general version of the marginal
function (5.1) given 11 the form

(5.7) plroy) = inf {o(y, 2)| z € F(z)}

with ¢: ¥ xZ — Rl I X = Z. This particularly covers the class of distance functions
to varying/moving sci~ defined by

ptro gy = inf {{iy — z| ! z€ F(x)}

whose subdifferential and Lipschitzian properties have been recently studied by Mordukhovich
and Nam [19] at both in-set and out-of-set points; see also the references therein. Now we
present the corresponding results for (5.7} obtained from Theorems 5.2 and 5.3. For brevity,
consider only the “inner scmicontinuous™ version of these theorems. '

Corollary 5.4 (singular subgradients and Lipschitzian continuity of generalized
marginal functions). Let o1 Y x Z — R and F: X =3 Z in the Asplund spaces setting,
and let the solution map

S{z,y) = {2 € F(x)| ulr.y) = ¢y, 2)}

be p-inner semicontinuous at some point ((r.§).Z). Assume also that ¢ is locally Lips-
chitzian around (§, %) end that F is closcd-graph around (3. 2). Then

< ulr. ) < {(.r'.mi.r' € D"\,F(.i-.f)(O)}‘

Moreover, p is Lipschitz-continuous around (7. §) if o 15 Ls.c. around this point while F is
Lipschitz-like around (. Z).

Proof. Put « := (z,y) and define

F(uy= Flr.y):= Flr).  Fuz) = 2y.2).
Then we have the representation

(5.8) plz,y) = plu) = inf {G(u.2)| z € f‘(u)}
Applying Theorem 5.2 with {, ) replacéd by (4.Z) = (T,7, z), we get

8 u(i,ij) = 8 u(w) C Dy F((Z,7),2)(0).
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It is easy to observe the inclusion
| Dy, F((#,9), 2)(0) € {(z*,0)] z* € D}, F(,2)(0)}.
Summarizing all the above, we arrive at
% u(z,9) C {(«*,0)| «* € D} F(Z,7)(0)}.

The conclusion about the Lipschitz continuity of u around {%, §) follows directly from The-
orem 5.3 applied to {3.3). ay

Observe that the generating map F(-) in (5.1}, and similarly in {5.7), describes the sets
of feasible solutions to the parametric optimization problem:

(5.9) minimize @(z,y) subject to y € F{x).
A general framework for describing feasible sets F{x) in most applied problems is as follows:
(5.10) Flz):={yeY|glz,y) € A, (z,y) €0},

where g: X xY - Z, A C Z,and Q C X x Y. Systems of type (5.10) are usually called
parametric constraint systems. In particular, model (5.10) can be treated as an extension
of the feasible solution sets in parametric problems of nonlinear programming with equality
and inequality constraints given by

Flz)={ye¥| olz.y) <0 for i=1,....m,
wila.y) =0 for f=m+l,...,m+r}.

Another important special case of (5.10} is
F(z) = {y € Y| g{z,y) = 0}.

which describes implicit functions/multifunctions.

Furthermore, the general framework of (5.1) is useful for modeling sets of optimal so-
lutions to lower-level optimization problems and also sclution sets arising from parametric
complementarity conditions and variational inequalities. In such cases, the sets F(x) are
usually given in the form of parametric generalized equations (or variational conditions) in
the sense of Robinson [28]:

(5.11) Flzy={yeYl0e fle.y)+ Qla.y}}

with f: X xY - Zand @: X x Y = Z. When. in particular, Q(y) = N(y; Q) is the
normal cone mapping to a convex set, model {5.11) describes solution maps to the classical
parameterized variational inequalities.

Having this in mind, one may treat the marginal function (5.1} with the generating
mapping F(z) given in form (5.11) as the value function in a mathematical program with
equilibrium constraints (MPEC): see Facchinel and Pang [6] for more examples and dis-
cussions. Thus, to make a conclusion on Lipschitz stability /continuity of value functions
in parametric optimization problems of type (5.9) with constraint sets (5.10) and/or in
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MPECs and related problems with constraints sets of type (5.11), we actually need-by
Theorem 5.3-to check the Lipschitz-like property of mappings F(x) given by (5.10) and
(5.11). Concerning the latter issue, we refer the reader to Chapter 4 of the book by Mor-
dukhovich [18], which contains calculations/estimates of coderivatives for systems (3.10),
(5.11), and their specifications together with verifiable conditions for their Lipschitzian sta-
bility in terms of the initial data in both finite-dimensional and infinite-dimensional settings.

Acknowledgments. This research was partially supported by the National Seience Foun-
dation under grant DMS-030498% and by the Australian Research Council under grant
DP-0451168.

References

(1] Aubin, J.-P. 1984, Lapschitz behavior of selutions to convex minimization problems. Math. Oper.
Res. 9 87-111.

[2] Bonnans, J. F., A. Shapirv, 2000, Proturbetion Analysis of Optimization Problems. Springer,

New York.

[3] Borwein, J. M., Q. J. Zhw. Technigues of Variational Anclysis. An Introduction. Springer, New

York, to appear.

[4] Clarke, F. H., Yu. 8. Ledyaev. R. J. Stern, P. R. Wolenski. 1998, Nonsmooth Analysis and
Control Theory. Springer. New York.

[5] Dontchev, A. L., A. S. Lewis. R. T. Hockafeliar, The radius of metric regularity. Trans. Amer.
Math. Soc. 355 493-517.

[6] Facchinei, F., J.-S. Pang. 2003. Fnte-Dunensional Variational Inequalities and Complemen-
tarity Problerns, Volumes I and 1. Springer. New York.

[7] loffe, A. D. 2000. Codirectional compactness. metric regularity and subdifferential calculus,.
M. Théra, ed. Constructive. Erpervmental and Nonlinear Analysis. American Mathematical
Society, Providence. RI. 123 164,

8] Ioffe, A. D., L-P. Penat. 1996, Subdifferenimals of performance functions and caleulus of
_ I
coderivatives of set-valued mappings. Scrdiea Math 22 350384

(9] Jourani, A., L. Thibanit. 1995, Qualiication comditions for valeulus rules of coderivatives of
multivalued mappings. J. Math. Anal Appl 218 60 >

{10] Jourani, A., L. Thibault. 1999. Caderivatives of multivaleed mappings, locally compact cones
and metric regularity.. Nenlinear Anal. 35 925- 945,

[11] Levy, A. B., B. 8. Mordukhovich. 2004. Coderivatives in parametric optimization, Math. Progr.,
Ser. A 99 311-327.

[12] Mordukhovich, B. S. 1976. Maximum priuciple in problems of time optimal control with nons-
mooth constraints. J. Appl. Math. Meeh. 40 960-969.

(13] Mordukhovich, B. S. 1980. Metric approximations and necessary optimality conditions for gen-
eral classes of nonsmooth extremal problmes. Soviet Math. Dokl 40 526-530.

{14] Mordukhovich, B. S. 1993. Complete characterizations of openness, metric regularity. and Lip-
schitzian properties of multifunctions. Trens. Amer. Math. Soc. 340 1-3A.

20



[15]
[16]
17)
(18]
[19]
[20]
[21]
[22)
23]
[24)
25)
126]
[27]
(28]
[29]

[30]
(31]

(32]
(33]

(34]
[35]

(36]

Mordukhovich, B. S. 1994, Generalized differential calculus for nonsmooth and set-valued map-
pings. J. Math. Anol. Appl. 183 250-288,

Mordukhovich, B. 8. 1997, Coderivatives of set-valued mappings: calculus and applications.
Nonlinear Anal. 30 3059-3070.

Mordukhovich, B. 5. 2004. Coderivative analysis of variational systems. J. Global Optim. 28
347-362.

Mordukhovich, B. §. Variational Analysis and Generalized Differentiation, Vol I: Basic Theory,
Vol. II: Applications. Springer, Berlin, to appear.

Mordukhovich, B. 5.. N. M. Nam. 2004. Subgradiens of distance functions with applications to
Lipschitzian stability. Math. Progr. Ser. B, to appear.

Mordukhovich, B. 8.. Y. Shao. 1996a. Nonsmooth sequential analysis in Asplund spaces. Trans.
Amer. Math. Soc. 348 1235-1280.

Mordukhovich, B. S.. Y. Shao. 1996b. Noneonvex differential calculus for infinite-dimensional
multifunctions. Set- Velued Anal. 4 205-236.

Mordukhovich, B. 8.. Y. Shao. 1997, Fuzzy calculus for coderivatives of multifunctions. Non-
tinear Anol. 29 605-626.

Mordukhovich, B. 5., Y. Shao. 1998. Mixed coderivatives of set-valued mappings in variational
analysis. J. Appl. Anal 4 269-204,

Mordukhovich, B. 5., B. Wang. 2003. Calculus of sequential normal compactness in variational
analysis, J. Math. Anal Appl. 282 63-84.

Qutrata, J. V. 1999. Optinality conditions for a class of mathematical programs with equilib-
rium constraints. Math. Oper. Res. 24 627-644.

Penot, J.-P. 1998. Compactness properties, openness criteria and coderivatives. Set- Valued Anal.
6 363-380.

Pheips, R. R. 1993. Conver Functions, Monotone Operators and Differentiability, 2nd ed.
Springer, Berlin.

Robinson, 5. M. 2003. Constraint nondegeneracy in variational analysis. Math. Oper. Res. 28
201-232.

Rockafellar, R. T. 1981. Proximal subgradients, marginal values and augmented Lagrangians
in nonconvex optimization. Math. Oper. Res. 6 424-436

Rockafellar, R. T., R. I-B. Wets. 1998. Vuriational Analysis. Springer, Berlin.

Thibault, L. 1980. Subdifferentials of compactly Lipschitzian vector-valued functions. Ann. Mat.
Pura Appl. 125 157-192. ‘

Thibault, L. 1991. On subdifferentials of optimal value functions. STAM J. Contrel Optim. 29
1019-1036.

Treiman, J. 5. 1999, Lagrange multipliers for nonconvex generalized gradients with equality,
inequality, and set constraints. SIAM J. Conirol Opttm. 37 1313-1320.

Vinter, R. B. 2000. Optimal Conirol. Birkhduser, Boston.

Ye, J. J., X. Y. Ye. 1997. Necessary optimality conditions for optimization problems with
variational inequality constraints. Math. Oper. Res. 22 977-997.

Ye, J. J,, Q. J. Zhu. 2003. Multiobjective optimization problems with variational inequality
constraints. Math. Progr., Ser. A 96 139-160.

21



	Wayne State University
	10-1-2004
	Variational Stability and Marginal Functions via Generalized Differentiation
	Boris S. Mordukhovich
	Nguyen Mau Nam
	Recommended Citation





