1,215 research outputs found

    Advances in Parallel-Stage Decoupled Software Pipelining Leveraging Loop Distribution, Stream-Computing and the SSA Form

    No full text
    8 pages Categories and Subject Descriptors D.3.4 [Programming Languages]: Processors-Compilers, OptimizationInternational audienceDecoupled Software Pipelining (DSWP) is a program partitioning method enabling compilers to extract pipeline parallelism from sequential programs. Parallel Stage DSWP (PS-DSWP) is an extension that also exploits the data parallelism within pipeline filters. This paper presents the preliminary design of a new PS-DSWP method capable of handling arbitrary structured control flow, a slightly better algorithmic complexity, the natural exploitation of nested parallelism with communications across arbitrary levels, with a seamless integration with data-flow parallel programming environments. It is inspired by loop-distribution and supports nested/structured partitioning along with the hierarchy of control dependences. The method relies on a data-flow streaming extension of OpenMP. These advances are made possible thanks to progresses in compiler intermediate representation. We describe our usage of the Static Single Assignment (SSA) form, how we extend it to the context of concurrent streaming tasks, and we discuss the benefits and challenges for PS-DSWP

    Quantifying the benefits of SPECint distant parallelism in simultaneous multithreading architectures

    Get PDF
    We exploit the existence of distant parallelism that future compilers could detect and characterise its performance under simultaneous multithreading architectures. By distant parallelism we mean parallelism that cannot be captured by the processor instruction window and that can produce threads suitable for parallel execution in a multithreaded processor. We show that distant parallelism can make feasible wider issue processors by providing more instructions from the distant threads, thus better exploiting the resources from the processor in the case of speeding up single integer applications. We also investigate the necessity of out-of-order processors in the presence of multiple threads of the same program. It is important to notice at this point that the benefits described are totally orthogonal to any other architectural techniques targeting a single thread.Peer ReviewedPostprint (published version

    Turbomachinery CFD on parallel computers

    Get PDF
    The role of multistage turbomachinery simulation in the development of propulsion system models is discussed. Particularly, the need for simulations with higher fidelity and faster turnaround time is highlighted. It is shown how such fast simulations can be used in engineering-oriented environments. The use of parallel processing to achieve the required turnaround times is discussed. Current work by several researchers in this area is summarized. Parallel turbomachinery CFD research at the NASA Lewis Research Center is then highlighted. These efforts are focused on implementing the average-passage turbomachinery model on MIMD, distributed memory parallel computers. Performance results are given for inviscid, single blade row and viscous, multistage applications on several parallel computers, including networked workstations

    Indexed dependence metadata and its applications in software performance optimisation

    No full text
    To achieve continued performance improvements, modern microprocessor design is tending to concentrate an increasing proportion of hardware on computation units with less automatic management of data movement and extraction of parallelism. As a result, architectures increasingly include multiple computation cores and complicated, software-managed memory hierarchies. Compilers have difficulty characterizing the behaviour of a kernel in a general enough manner to enable automatic generation of efficient code in any but the most straightforward of cases. We propose the concept of indexed dependence metadata to improve application development and mapping onto such architectures. The metadata represent both the iteration space of a kernel and the mapping of that iteration space from a given index to the set of data elements that iteration might use: thus the dependence metadata is indexed by the kernel’s iteration space. This explicit mapping allows the compiler or runtime to optimise the program more efficiently, and improves the program structure for the developer. We argue that this form of explicit interface specification reduces the need for premature, architecture-specific optimisation. It improves program portability, supports intercomponent optimisation and enables generation of efficient data movement code. We offer the following contributions: an introduction to the concept of indexed dependence metadata as a generalisation of stream programming, a demonstration of its advantages in a component programming system, the decoupled access/execute model for C++ programs, and how indexed dependence metadata might be used to improve the programming model for GPU-based designs. Our experimental results with prototype implementations show that indexed dependence metadata supports automatic synthesis of double-buffered data movement for the Cell processor and enables aggressive loop fusion optimisations in image processing, linear algebra and multigrid application case studies

    Factoring out ordered sections to expose thread-level parallelism

    Get PDF
    With the rise of multi-core processors, researchers are taking a new look at extending the applicability auto-parallelization techniques. In this paper, we identify a dependence pattern on which autoparallelization currently fails. This dependence pattern occurs for ordered sections, i.e. code fragments in a loop that must be executed atomically and in original program order. We discuss why these ordered sections prohibit current auto-parallelizers from working and we present a technique to deal with them. We experimentally demonstrate the efficacy of the technique, yielding significant overall program speedups

    Acceleration of a Full-scale Industrial CFD Application with OP2

    Get PDF
    • …
    corecore