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Abstract

With the rise of multi-core processors, researchers
are taking a new look at extending the applicabil-
ity auto-parallelization techniques. In this paper,
we identify a dependence pattern on which auto-
parallelization currently fails. This dependence pat-
tern occurs for ordered sections, i.e. code fragments in
a loop that must be executed atomically and in origi-
nal program order. We discuss why these ordered sec-
tions prohibit current auto-parallelizers from working
and we present a technique to deal with them. We ex-
perimentally demonstrate the efficacy of the technique,
yielding significant overall program speedups.

1. Introduction

Chip manufacturars have made a shift towards
building multi-core processors. This puts a large de-
mand on techniques for extracting thread-level paral-
lelism (TLP) from applications. As these multi-core
processors are shipped in all kinds of systems (server,
desktop and laptop), it has become necessary to exploit
TLP also in applications that have traditionally not
been considered as good candidates for multi-threaded
execution: programs with complex control flow and
hard-to-predict memory access patterns.

We have found that, in these applications, TLP is
often limited due to small details. In particular, a loop
nest can be highly parallel, except for a few statements
in the loop that introduce a dependency between loop
iterations. Yet, these statements are so few (or they are
perhaps never executed in practice), that parallelisa-
tion should be possible, at least to some extent. Some

of these dependence patterns are well known, e.g. re-
ductions and critical sections, and solutions have been
in use for a long time.

The contribution of this paper is to provide a solu-
tion to a more complicated case: the case where oper-
ations must remain in program order (more stringent
than critical sections), but the parallelized code region
does not depend on values computed by these oper-
ations. These ordered sections may be very benign,
such as the generation of debugging output when a flag
is set. On the other hand, they may also concern up-
dating critical data structures. We present a method to
allow parallelization of this construct.

Moreover, we demonstrate that our method also
helps to deal with respecting the order of system calls
and dealing with multiple call sites to exit() by callee
functions. These issues are very important for dealing
with program side-effects and for respecting sequen-
tial program semantics.

We demonstrate the effectiveness of our method on
several benchmarks (bzip2 from SPECint2000, mcf
from SPECint2006, clustalw from BioPerf). The in-
tent of this work is to present methods than can be im-
plemented in auto-parallelizing compilers. While we
are working on such a compiler, actual compiler algo-
rithms and implementation are out of the scope of this
work.

This paper is structured as follows. In Section 2 we
discuss the researched problem and we present our so-
lution in Section 3. We experimentally evaluate our
solution in Section 4. We discuss related work in Sec-
tion 5 and summarize conclusions in Section 6.
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(a) DOALL loop (b) Pipeline (c) Parallel-stage
pipeline

(d) Task parallelism

Figure 1. Types of parallelism frequently in-
vestigated in the current literature. For the
loop cases, only the instructions in the loop
are shown.

2. The Problem

It is recognized that programs with complex
control-flow and/or complex memory access patterns
require specific types of parallelism. Rather than
DOALL loops, one should search for pipelines [9, 12],
parallel-stage pipelines [10] and task parallelism. Fur-
thermore, some researchers advocate using specula-
tion to reduce the code structure to one of these types
of parallelism and thus expose parallelism [4, 13].

In any of the cases above, we demand that depen-
dencies between statements respect a particular pat-
tern. This is easily represented using the program
dependence graph (PDG) [6], where statements are
represented as nodes and dependencies between state-
ments are represented as directed edges. Edges are in-
serted for control and data dependencies, and also for
memory dependencies. Parallelism is detected in the
PDG by computing strongly connected components
(SCC) in the graph [9]. The cited types of parallelism
can be graphically represented by the dependencies be-
tween the strongly connected components (Figure 1).

However, more often than not, the parallel code re-
gions may contain code fragments that introduce de-
pendencies and inhibit the exploitation of parallelism.
These code fragments may be very benign, such as the
generation of debugging output when a flag is set, or
they may be updates to data structures that must be ex-
ecuted in the original program order. Hence, we call
these code fragments ordered sections, in correspon-
dence to the same term in OpenMP [8]. In this paper,
we focus on particular ordered sections, namely those
that do not produce values consumed by the remainder
of the loop or task. As such, there is a certain amount

loop :
whi l e ( c o n d i t i o n ) {

x = consume ( ) ;
y = f ( x ) ;
z = g ( y ) ;
p roduce ( z ) ;

}

f ( x ) {
y = o p e r a t e on x ;
G = o r d e r e d \ s e c t i o n \ 1 (G, x , y ) ;
re turn y ;

}

g ( y ) {
z = o p e r a t e on y ;
G = o r d e r e d \ s e c t i o n \ 2 (G, y , z ) ;
re turn z ;

}

Figure 2. Pseudo-code for a parallelizable
loop with ordered sections.

of slack in executing these ordered sections and an op-
portunity for exploiting parallelism arises.

To illustrate the problem, we draw upon an exam-
ple. The pseudo-code in Figure 2 describes a paral-
lelizable loop with ordered sections. The loop takes
input data x and transforms it into output data z in
two steps. We assume that a good parallel partitioning
of the loop places functions f(·) and g(·) in separate
pipeline stages.

This pipeline, however, is obscured by the presence
of ordered sections in these functions. Each of the or-
dered sections draws upon some values produced by
the main code and they update a shared global vari-
able G. Function calls are represented as a single node
in the program dependence graph. Hereby, they are
treated as an undivisable entity. It is no longer possi-
ble to separate the ordered sections from the remain-
der of the code. The corresponding PDG is depicted in
Figure 3(a). We observe that nodes f(·) and g(·) are
cyclically dependent through variable G.

Note that the cyclic dependence is there only be-
cause the ordered sections are located in functions
called from the loop. Hence, the ordered sections are
necessarily merged together with the remainder of the
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Figure 3. Program dependence graph for the
example loop (left) and for the example loop
where functions f and g are inlined.

functions f(·) and g(·). The problem disappears when,
for instance, we inline the bodies of the functions into
the loop. The corresponding PDG (Figure 3(a)) con-
tains two nodes for each function: the operate step (op)
and the ordered section (OS). The ordered sections still
reduce to a single SCC. As the remainder of the code
is no longer dependent on the ordered sections, the
pipeline can be readily seen.

Note that the situation of Figure 3(b) corresponds
to loops where ordered sections do not occur in callee
functions, a situation that is parallelizable by prior ap-
proaches [9, 5, 13]. In this work, we propose a scalable
solution to the general problem of ordered sections in
callee functions. Function inlining is not a suitable
solution to this problem; we used it only for didacti-
cal reasons. Function inlining is not suitable because
(i) function inlining is an optimization in its own right
with sensitive cost/performance models, and (ii) it is
not sufficiently generic in the face of deep call trees
and (mutually) recursive functions.

3. The Solution

Conceptually, the proposed solution is to remove or-
dered sections from callee functions and to move them
to the loop body. Hereby the necessary dependences
between function calls remain while the ordered sec-
tions reduce to an SCC without outgoing edges. The

method to achieve this is to create a queue of ordered
sections remaining to be processed. Ordered sections
are enqueued when a callee function would have en-
tered one. They are dequeued only when program de-
pendences allow so, typically in the last stage of the
pipeline.

3.1. Dissecting Ordered Sections

Three properties of ordered section are important to
describe how ordered sections are factored out.

The update set of an ordered section is the set of
all program variables that are modified by the ordered
section.

The copy set of an ordered section is the set of all
program variables that the ordered section reads, ex-
cluding program variables in the update set and ex-
cluding loop-constant program variables.

The factored code of an ordered section is a frag-
ment of the control flow graph of the containing func-
tion, i.e. basic blocks and instructions. The factored
code contains all the instructions operating on the up-
date set and all of their dependents. Control flow in-
structions between basic blocks must be properly du-
plicated. Separating factored code from the remainder
of the code is actually quite similar to splitting a loop
body in pipeline stages and can be handled in the same
way, e.g. [9].

The factored code may not include function return
statements as this would violate the proposition that
the majority of the code is not dependent on the or-
dered section. Furthermore, ordered sections do not
cross function boundaries for reasons of simplicity.

3.2. Operations on the PDG

When factoring out an ordered section from a callee
function, we must update the program dependence
graph to reflect a reduction of dependencies for the
function call node.

Hereto, we add a consuming call node to the PDG,
besides the original function call node. The original
call node represents the non-ordered section part of
the function, plus the code to enqueue ordered sec-
tions. The consuming call node represents taking or-
dered sections from the queue and executing them.

Dependencies in the PDG are updated in the follow-
ing way:



1. All outgoing dependencies from the original call
node that indicate updates to a variable in the up-
date set of the ordered section are redirected to
start from the consuming call node.

2. All incoming dependencies to the original call
node that indicate dependence on a variable in the
update set of the ordered section are redirected to
point to the consuming call node.

3. A dependence is added from the original call
node to the consuming call node to indicate the
causality between producing ordered sections in
the queue and consuming them. All incoming de-
pendencies of the ordered section that are not part
of its update set are implicitly captured by this
queue dependence.

There can be only one consuming call node for ev-
ery original call node, even when multiple ordered sec-
tions are factored out. In the case of multiple ordered
sections, the PDG is updated by steps 1 and 2.

3.3. Code Transformation

Hopefully, the modified PDG will expose additional
parallelism. When parallelism is found and parallel
code is generated, additional code must be included to
factor out ordered sections and to consume the ordered
sections.

To enqueue a message for an ordered section, a mes-
sage is constructed containing an ordered section ID
(each ordered section is assigned a unique ID to iden-
tify it) and a copy of all the variables in its copy set.

In the functions, instructions belonging to ordered
sections are removed. Instead, code is inserted to
queue the ordered section. The queued information
consists of an ordered section ID and a copy of every
program variable in its copy set.

Finally, additional code is added to the main loop to
dequeue ordered sections. This code consists of a loop
that takes every ordered section from the queue and
executes the corresponding code using program vari-
ables from the copy set where necessary. When the
number of enqueued ordered sections is expected to
be small, then it is possible to add the consuming loop
to the last pipeline stage of the loop. In this case, the
queue grows to its maximum size during the execution
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Figure 4. Execution chart of loop with
pipeline parallelism and factored ordered
sections.

of each pipeline stage. The queue is emptied only after
the last pipeline stage has executed.

The general solution is to create an additional thread
that executes ordered sections as they are inserted in
the queue. The thread starts when the first pipeline
stage starts executing. It stops by a special message
that is sent when the last pipeline stage finishes. It is
likely that this thread is idle very often. It is needed
only to limit the size of the queue.

When the size of the ordered section queue is ex-
pected to be bounded, and because it is often the case
that ordered sections are responsible for only a frac-
tion of the code executed in the loop, the first approach
works quite well. It is used in all the examples in the
evaluation section.

However, when a queue grows beyond acceptable
size, it is possible to limit memory consumption by
blocking a thread when it tries to add additional ele-
ments to the queue. When all previous loop iterations
have finished, the ordered sections may be dequeued
and executed and the thread may continue execution.

An execution chart of the resulting code transfor-
mation is depicted in Figure 4 for a 3-stage pipeline.
Code block Sp,i executes pipeline stage p for loop iter-



ation i. Code blocks S1,i and S2,i may insert ordered
sections in queue Qi, which is specific to loop itera-
tion i. Ordered sections are consumed in step OSi,
before executing step S3,i. The latter pipeline stage
directly executes ordered sections (this is an optimiza-
tion to avoid unnecessary queueing overheads). Note
that the queue for iteration i + 1 is not consulted be-
fore iteration i has completely executed. This timing is
necessary to respect the semantics of ordered sections.

3.4. Handling System Calls

Ordered sections help dealing with system calls.
Again, these remarks apply to system calls embedded
in functions called from a parallelized loop.

Compilers generally treat system calls with great
conservatism, causing all system calls embedded in
functions called from a loop to be mutually dependent.
Such a situation kills parallelism. Building on ordered
sections, it is possible to ameliorate this situation. One
starts by trying to factor out every system call as an
ordered section. This operation fails when the system
call produces input data for the loop, e.g. a read() call.1

If, however, all system calls can be factored out, then
conservatively correct thread-level parallelism may be
exposed.

Furthermore, when functions called from a paral-
lelized loop contain multiple calls to exit() or abort(),
then ordered sections help to provide a correct imple-
mentation. Without recognizing program exits, it is
possible that the wrong exit is taken and perhaps the
wrong error message is printed. This can happen, e.g.,
when pipeline stage S1,n executing iteration i exits the
program before pipeline stage S2,1 is executed and has
the opportunity to exit.

Handling multiple exits is straightforward using or-
dered sections: every function call that may not return
is an ordered section and is factored out. Furthermore,
at the point of executing the non-returning function
call, the thread sets a flag that the current iteration i

is finished, nullifying all code in pipeline stages Sp,i.
Furthermore, all threads executing pipeline stages q ≤

1Conservatism requires that calls to read() are treated as aliased
to other system calls which may interfere, even write() on a differ-
ent file descriptor. E.g. the program may be in communication
with another program over a UNIX pipe, causing reads to block
on writes from the other program. Interchanging reads and writes
on such a program may lead to deadlock.

p, where p is the current pipeline stage, are blocked.
The last pipeline stage continues execution and exe-
cutes the first exit it encounters, respecting sequential
semantics.

4. Experimental Evaluation

We evaluate the proposed code transformation for
exposing thread-level parallelism using 3 benchmarks:
bzip2 (taken from SPEC CPU20002), mcf (SPEC
CPU2006) and clustalw (BioPerf [1]).

We test these benchmarks on an Intel I7 quad-core
processor (8 threads in total) and a Sun Niagara T1
8-core processor (32 threads in total). We use gcc
4.1.2 on the Niagara and gcc 4.3.2 on the Intel I7.
Parallelism is expressed using POSIX or OpenMP.
When using OpenMP, we compile with gcc 4.4 to have
OpenMP 3.0 support.

4.1. Bzip2

The main compression loop in bzip2
(SPECint2000) is a 4-stage pipeline, where stages
2 and 3 are parallel stages [11]. Many functions in
bzip2, however, may print debugging information
depending on the value of a verbosity flag. To
reconcile the goals of parallelizing the code and
guaranteeing the correct ordering of print statements,
we isolate these print statements in separate tasks
using the method of this paper. Hereby, the pipeline
becomes valid. The same transformation is applied to
the 2-stage pipeline in the decompression code.

We implemented the parallel pipelines using the
POSIX threads library [11]. The timing measurements
(Figure 5) reveal that the compression stage benefits
from up to 6 threads on the Niagara processor and up
to 4 threads on the I7. Decompression can benefit from
at most 2 threads due to the structure of the pipeline.
Overall, a speedup of 2.97 and 2.00 is obtained on the
Niagara and I7 processors, respectively.

4.2. Mcf

An almost DO-ALL loop occurs in the
primal bea mpp() function of the mcf bench-
mark. This loop scans over the edges in a graph and

2http://www.spec.org/.
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Figure 5. Execution time of bzip2 on two multi-core processors.

collects edges meating a specific criterium, which are
added to the back of a list. The scanning code does
not modify memory and can be freely parallelized,
but the order in which elements are added to the list
is important. Thus, we factor out the updates to the
list and let the scanning code run in parallel. Figure 6
shows that performance scales to a 1.52 speedup with
4 threads on the I7 and to 2.18 with 16 threads on the
Niagara T1.

4.3. Clustalw

Clustalw spends almost all its execution time in
two stages: pairwise alignment and progressive align-
ment [14].

Pairwise alignment of sequences using the Smith-
Waterman algorithm is trivially parallel as the align-
ment of every pair of sequences is independent. How-
ever, the code prints the score of each pair of sequences
as it progresses, hence current compiler techniques do
not recognize this parallelism. We use the same code
transformation as in bzip2 to enable the parallelism.
Figure 7 shows the performance scaling of this highly
parallel loop, which shows near-perfect scaling.

The progressive alignment stage contains much less
parallelism. The bulk of the computation is in a func-
tion pdiff() where two loop nests can be executed
in parallel. Figure 7 shows that this parallelism re-
duces progressive alignment execution time from 17.0
seconds to 10.0 seconds, using 2 threads.

Additional parallelism is present between the
doubly-recursive calls in this function, as each call is
almost independent of the other calls. The term “al-
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stands for “progressive alignment.”

most” refers to a serialization that occurs due to up-
dates to a shared array (displ[]) that occurs mostly
in the leaf calls of the recursion and sometimes in be-
tween the two recursive calls. With the technique of
this paper and using 4 threads, performance improves
by 5.4% (Figure 7). Although this speedup is not very
high, the aim of the exercise is to show that the paral-
lelism can be correctly extracted.

Performance can probably be improved with more
implementation work. We used the OpenMP task con-
struct to express the parallelism, but OpenMP sched-
ules tasks in a sub-optimal order, especially since tasks
are also used to express the parallelism between the
loop nests. 3 Performance is significantly improved
if processors are allocated in pairs, one for each loop

3Nesting OpenMP sections in tasks turned out to perform
worse due to repetitive creation and destruction of threads.
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Figure 6. Execution time of mcf on two multi-core processors.

nest, a trick we applied in our implementation for the
Cell B.E. [14].

5. Related Work

The context of this work is the search for ways
to automatically parallelize control-flow intensive ap-
plications. Decoupled software pipelining is a com-
pilation technique to recognize pipelines and to dis-
tribute the pipeline stages across threads [9]. Parallel-
stage pipelines are pipelines where some stages are
not dependent on themselves and allow additional par-
allelism [10, 11] Program demultiplexing attempts to
extract threads by viewing a sequential program as a
set of interleaved threads [2]. All of these approaches
succeed in discovering TLP to some extent. In our ex-
perience, however, they get stuck on particular depen-
dence patterns, one of which is discussed in this paper.

Thread-level speculation (TLS) aims to expose TLP
that is not provably correct [7, 3]. By adding hard-
ware and/or software checkpointing and restore mech-
anisms for memory, it is possible to undo the effects of
misspeculation. Many proposals of TLS mechanisms
can, however, not expose the same coarse-grain par-
allelism as the proposed technique can. For instance,
speculative threads may not perform side-effects that
cannot be undone, e.g. I/O. Also, TLS executes or-
dered sections speculatively, making these an impor-
tant source of thread squashes. These thread squashes
may be avoided with the technique proposed in this
paper.

Copy-or-Discard [13] is a software TLS technique
that exploits parallel-stage pipeline parallelism specu-

latively. The code transformation proposed by the au-
thors performs a similar transformation as the one pro-
posed in this paper: Instructions that are likely part of a
cross-iteration dependence are moved to a sequentially
executed epilogue for the loop. In their case, how-
ever, they base themselves on profile information to
determine what code to move. Consequently, if a de-
pendence is not caught by profiling information, then
the dependent instructions remain in the parallel loop
body and speculation will fail. This work, in contrast,
yields parallel speedups whether the dependence is ex-
ecised or not.

The IPOT programming model [15] proviades an-
notations for identifying transactions in programs,
which are executed by an underlying transactional sub-
strate. IPOT provides several annotations that allow
the programmer to identify cross-transaction depen-
dences, which can reduce dependence violations on
ordered sections. These include reduction patterns,
which are a particular type of ordered section, and race
conditions that do not impact the program outcome
(e.g. updates to a cut-off limit in branch and bound
algorithms).

The term ordered section is based on the OpenMP
construct that indicates that a critical section must ex-
ecute in the original program order. In OpenMP, how-
ever, ordered sections are limited to loops and at most
one ordered section may exist per loop [8]. With our
technique, we allow multiple ordered sections per loop
that are strung together in the correct program order.
Furthermore, our discussion of ordered sections also
applies to non-DOALL loops and to task parallelism.



6. Conclusion

Ordered sections are code fragments that must be
executed in original program order. Within an other-
wise parallel loop, they can strongly inhibit the effi-
cient exploitation of parallelism.

This paper presents a method for efficiently execut-
ing such ordered sections in the case where the remain-
der of the loop is not dependent on the values com-
puted in the ordered sections. We extract the ordered
sections into tasks and we copy part of the data en-
vironment, if necessary. When executing an ordered
section, a task is generated for it and placed in queues.
Finally, the tasks are taken from the queues in sequen-
tial program order and are executed.

We demonstrate the efficacy of this technique on
several benchmarks, allowing the parallelization of
loops that are otherwise not parallelizable. Scalabil-
ity of the parallelization is discussed on two multi-
core processors: a quad-core Intel I7 and a 32-thread
Sun Niagara processors. We are currently working on
implementing the proposed code transformation in a
compiler.
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