4,003 research outputs found

    Machine Learning for Financial Prediction Under Regime Change Using Technical Analysis: A Systematic Review

    Get PDF
    Recent crises, recessions and bubbles have stressed the non-stationary nature and the presence of drastic structural changes in the financial domain. The most recent literature suggests the use of conventional machine learning and statistical approaches in this context. Unfortunately, several of these techniques are unable or slow to adapt to changes in the price-generation process. This study aims to survey the relevant literature on Machine Learning for financial prediction under regime change employing a systematic approach. It reviews key papers with a special emphasis on technical analysis. The study discusses the growing number of contributions that are bridging the gap between two separate communities, one focused on data stream learning and the other on economic research. However, it also makes apparent that we are still in an early stage. The range of machine learning algorithms that have been tested in this domain is very wide, but the results of the study do not suggest that currently there is a specific technique that is clearly dominant

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Evolution of trading strategies with flexible structures: A configuration comparison

    Get PDF
    Evolutionary Computation is often used in the domain of automated discovery of trading rules. Within this area, both Genetic Programming and Grammatical Evolution offer solutions with similar structures that have two key advantages in common: they are both interpretable and flexible in terms of their structure. The core algorithms can be extended to use automatically defined functions or mechanisms aimed to promote parsimony. The number of references on this topic is ample, but most of the studies focus on a specific setup. This means that it is not clear which is the best alternative. This work intends to fill that gap in the literature presenting a comprehensive set of experiments using both techniques with similar variations, and measuring their sensitivity to an increase in population size and composition of the terminal set. The experimental work, based on three S&P 500 data sets, suggest that Grammatical Evolution generates strategies that are more profitable, more robust and simpler, especially when a parsimony control technique was applied. As for the use of automatically defined function, it improved the performance in some experiments, but the results were inconclusive. (C) 2018 Elsevier B.V. All rights reserved.The authors acknowledge financial support granted by the Spanish Ministry of Science and Innovation under grant ENE2014-56126-C2-2-R

    Risk Management using Model Predictive Control

    Get PDF
    Forward planning and risk management are crucial for the success of any system or business dealing with the uncertainties of the real world. Previous approaches have largely assumed that the future will be similar to the past, or used simple forecasting techniques based on ad-hoc models. Improving solutions requires better projection of future events, and necessitates robust forward planning techniques that consider forecasting inaccuracies. This work advocates risk management through optimal control theory, and proposes several techniques to combine it with time-series forecasting. Focusing on applications in foreign exchange (FX) and battery energy storage systems (BESS), the contributions of this thesis are three-fold. First, a short-term risk management system for FX dealers is formulated as a stochastic model predictive control (SMPC) problem in which the optimal risk-cost profiles are obtained through dynamic control of the dealers’ positions on the spot market. Second, grammatical evolution (GE) is used to automate non-linear time-series model selection, validation, and forecasting. Third, a novel measure for evaluating forecasting models, as a part of the predictive model in finite horizon optimal control applications, is proposed. Using both synthetic and historical data, the proposed techniques were validated and benchmarked. It was shown that the stochastic FX risk management system exhibits better risk management on a risk-cost Pareto frontier compared to rule-based hedging strategies, with up to 44.7% lower cost for the same level of risk. Similarly, for a real-world BESS application, it was demonstrated that the GE optimised forecasting models outperformed other prediction models by at least 9%, improving the overall peak shaving capacity of the system to 57.6%

    Computational Intelligence Applied to Financial Price Prediction: A State of the Art Review

    Get PDF
    The following work aims to review the most important research from computational intelligence applied to the financial price prediction problem. The article is organized as follows: The first section summarizes the role of predictability in the Neoclassical financial world. This section also criticizes the zero predictability framework. The second section presents the main computational intelligence techniques applied to financial price prediction. The third section depicts common features of revised works

    Evolutionary algorithms for financial trading

    Get PDF
    Genetic programming (GP) is increasingly popular as a research tool for applications in finance and economics. One thread in this area is the use of GP to discover effective technical trading rules. In a seminal article, Allen & Karjalainen (1999) used GP to find rules that were profitable, but were nevertheless outperformed by the simple “buy and hold” trading strategy. Many succeeding attempts have reported similar findings. This represents a clear example of a significant open issue in the field of GP, namely, generalization in GP [78]. The issue of generalisation is that GP solutions may not be general enough, resulting in poor performance on unseen data. There are a small handful of cases in which such work has managed to find rules that outperform buyand- hold, but these have tended to be difficult to replicate. Among previous studies, work by Becker & Seshadri (2003) was the most promising one, which showed outperformance of buy-and-hold. In turn, Becker & Seshadri’s work had made several modifications to Allen & Karjalainen’s work, including the adoption of monthly rather than daily trading. This thesis provides a replicable account of Becker & Seshadri’s study, and also shows how further modifications enabled fairly reliable outperformance of buy-and-hold, including the use of a train/test/validate methodology [41] to evolve trading rules with good properties of generalization, and the use of a dynamic form of GP [109] to improve the performance of the algorithm in dynamic environments like financial markets. In addition, we investigate and compare each of daily, weekly and monthly trading; we find that outperformance of buy-and-hold can be achieved even for daily trading, but as we move from monthly to daily trading the performance of evolved rules becomes increasingly dependent on prevailing market conditions. This has clarified that robust outperformance of B&H depends on, mainly, the adoption of a relatively infrequent trading strategy (e.g. monthly), as well as a range of factors that amount to sound engineering of the GP grammar and the validation strategy. Moreover, v we also add a comprehensive study of multiobjective approaches to this investigation with assumption from that, and find that multiobjective strategies provide even more robustness in outperforming B&H, even in the context of more frequent (e.g. weekly) trading decisions. Last, inspired by a number of beneficial aspects of grammatical evolution (GE) and reports on the successful performance of various kinds of its applications, we introduce new approach for (GE) with a new suite of operators resulting in an improvement on GE search compared with standard GE. An empirical test of this new GE approach on various kind of test problems, including financial trading, is provided in this thesis as well

    Field Guide to Genetic Programming

    Get PDF

    Applications of Genetic Programming to Finance and Economics: Past, Present, Future

    Get PDF
    While the origins of Genetic Programming (GP) stretch back over fifty years, the field of GP was invigorated by John Koza’s popularisation of the methodology in the 1990s. A particular feature of the GP literature since then has been a strong interest in the application of GP to real-world problem domains. One application domain which has attracted significant attention is that of finance and economics, with several hundred papers from this subfield being listed in the Genetic Programming Bibliography. In this article we outline why finance and economics has been a popular application area for GP and briefly indicate the wide span of this work. However, despite this research effort there is relatively scant evidence of the usage of GP by the mainstream finance community in academia or industry. We speculate why this may be the case, describe what is needed to make this research more relevant from a finance perspective, and suggest some future directions for the application of GP in finance and economics

    From feedback-as-information to feedback-as-process: a linguistic analysis of the feedback literature

    Get PDF
    Feedback is a term used so frequently that it is commonly taken that there is a shared view about what it means. However, in recent years, the notion of feedback as simply the provision of information to students about their work has been substantially challenged and learning-centred views have been articulated. This paper employs a corpus linguistics approach to analyse the use of the term ‘feedback’ in research articles published in key higher education journals on the topic over two five-year periods: 2009–2013 and 2015–2019. Analysis focused on the most common noun modifiers of ‘feedback’ and nouns modified by ‘feedback’, verbs with ‘feedback’ as the object, possessors of ‘feedback’, and prepositions representing an action or concept on or with ‘feedback’. Whilst the analysis demonstrated that transmission-focused conceptions dominate publications on feedback, linguistic signifiers of a shift over time in representation of feedback away from a transmission-focus towards a learning-focus were evident within each grammatical relation category. The data indicate that the term ‘feedback’ is used by different authors to refer to very different representations of the concept, and the paper proposes that greater clarity in the representation of feedback is needed
    • 

    corecore