9 research outputs found

    Transmit Beamforming in Dense Networks-A Review

    Get PDF
    Communication technology has prospered in manifolds over the last decade. The scarcity of spectrum as well as the demand for higher data rates and increase in capacity has become a matter of concern. Newer technologies have evolved time and again, the latest of which is Long Term Evolution (LTE) and Long Term Evolution Advanced (LTE-A) systems more commonly known as 4G technology. The striking feature of LTE/LTE-A is the deployment of smaller cells (femto cells) in the vicinity of a large macro cells resulting in a dense network. As a result the data rate as well as capacity has increased in manifolds but the detrimental factor is the issue of interference between the various cells. Beamforming provides a solution in removing the issues of interference in dense networks. This paper focuses on the interference scenario in LTE dense networks and gives an overview of different beamforming methods that can provide a solution to the interference problem. Further, a review of several such methods so far proposed in available literature has been presented in this paper.Keywords:LTE/LTE-A, Dense Network, Interference,Beamformin

    Space-Time Codes Technology

    Get PDF
    Space-time codes technology is a channel coding for wireless digital communications, where multiple antennas are employed. It improves the capacity of the transmission as well as reducing errors. Also, this technology does not require the expansion of bandwidth or time slots. In order to achieve the highest efficiency, we have to first investigate the maximum efficiency that can be achieved. Then, the code design criteria for obtaining the maximum efficiency have to be derived. Last, the code design approaches have to be proposed. The article discusses those procedures

    Study the Effect of Co-Channel Interference in STC MIMO-OFDM System and Mitigation of CCI using Beamforming Technique

    Get PDF
    In this modern age of high speed wireless data communication, Multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) schemes have recently drawn wide interests due to their capability of high data rate transmission over multipath fading channels. This thesis work introduces the study of multi- user and multi-antenna MIMO-OFDM systems. In this work, the performances of two main classes of MIMO-OFM system i.e. multi-user and multi-antenna MIMO-ODM techniques have been studied. The transmitted data is sent using BPSK, QPSK modulation techniques. The performance of the system in Rayleigh and AWGN channel is studied. Space time coding technique also used in transmitting side of the multi-antenna MIMO system.Study and analysis of the effect of co-channel interference over wireless communication system is considered the main objective of this project work .Beamforming technique is one of the best techniques to mitigate co-channel interference. There are several beamforming techniques like LMS, RLS style beamforming techniques. LMS style adaptive beamforming technique is applied to the system. The performance of the LMS style beamforming technique for mitigation of co-channel interference has been analyzed for different modulation techniques.The performance comparison between the adaptive beamforming and null steering beamforming techniques is carried out for the space time coded MIMO-OFDM system. From the performance analysis, it is observed that to mitigate the co-channel interference in ST coded MIMO-OFDM system, adaptive beamforming technique outperforms the method based on the null steering beamforming

    Técnicas de gestão de feixe de onda para sistemas Massive MIMO nas redes 5G NR

    Get PDF
    The use of Millimeter wave (mmWave) spectrum frequencies is seen as a key enabler technology for the future wireless communication systems to overcome the bandwidth shortage of the sub 6GHz microwave spectrum band, enabling high speed data transmissions in the 5G/6G systems. Nevertheless, mmWave propagation characteristics are associated to significant free-path losses and many more attenuations that become even more harsher as the frequency increases, rendering the communication challenging at this frequencies. To overcome these distinct disadvantages, multiple antenna arrays are employed to allow beamforming techniques for the transmission of narrower concentrated beams in more precise directions and less interference levels between them, consequently improving the link budget. Thus, to constantly assure that the communication with each device is done using the beam pair that allows the best possible connectivity, a set of Beam Management control procedures is necessary to assure an efficient beamformed connection establishment and its continuous maintenance between the device and the network. This dissertation will address the description of the Initial Beam Establishment (IBE) BM procedure, focusing the selection of the most suitable transmit-receive beam pair available after completed beam sweeping techniques to measure the different power levels of the received signal. The main goal is to design a new 3GPP-standard compliant beam pair selection algorithm based on SSS angle estimation (BSAE), that makes use of multiple Synchronization Signal Blocks (SSBs) to maximize the Reference Signal Received Power (RSRP) value at the receiver, through the selected beam pair. This optimization is done using the Secondary Synchronization Signals (SSSs) present in each SSB to perform channel estimation in the digital domain (comprising the effects of the analog processing). Afterwards, the combination of those estimations were used to perform the equivalent channel propagation matrix estimation without the analog processing effects. Finally, through the channel propagation matrix, the angle that maximizes the RSRP was determined to compute the most suitable beam through the aggregated response vector. The obtained results show that the proposed algorithm achieves better performance levels compared to a conventional beam pair selection algorithm. Furthermore, a comparison with an optimal case is also done, i.e., the situation where the channel is known, and the optimal beam pair angle can be determined. Therefore, the similar performance results compared to the optimal case indicates that the proposed algorithm is interesting for practical 5G mmWave mMIMO implementations, according to 3GPP-compliant standards.O uso de frequências na banda das ondas milimétricas é visto como uma tecnologia chave para os futuros sistemas de comunicação móveis, tendo em vista a ultrapassar o problema da escassez de banda a sub-6 GHz, e por permitir as elevadas taxas de dados requeridas para sistemas 5G/6G. Contudo, a propagação deste tipo de ondas está associado a perdas acentuadas em espaço livre e várias atenuações que se tornam cada vez mais significativas com o aumento do valor da frequência, impondo obstáculos à comunicação. Para ultrapassar estas adversidades, agregados constituídos por múltiplos elementos de antena são implementados por forma a permitir técnicas de formação de feixe e possibilitar a transmissão de feixes mais estreitos e altamente direcionais, diminuindo os níveis de interferência e melhorando consequentemente o link budget. Deste modo, para assegurar constantemente que a comunicação efetuada em cada dispositivo ocorre utilizando o conjunto de feixes que proporciona o melhor nível de conectividade, é então necessário um conjunto de procedimentos de controlo de gestão de feixe, assegurando um estabelecimento eficiente da comunicação e a sua contínua manutenção entre um dispositivo e a rede. Esta dissertação descreve o procedimento de gestão de feixe conhecido como estabelecimento inicial de feixe, focando o processo de seleção do melhor par de feixe de transmissão-receção disponível após o uso de técnicas de varrimento de feixe por fim a efetuar medições dos diferentes níveis de potência do sinal recebido. O principal objetivo passa pela conceção de um novo algoritmo de estabelecimento de par de feixes baseado em estimações de ângulo (BSAE), que explora o uso de múltiplos SSBs definidos pelo 3GPP, por forma a maximizar o RSRP no recetor, através do feixe selecionado. Esta otimização é feita usando os sinais de sincronização secundários (SSSs) presentes em cada SSB para efetuar uma estimação de canal no domínio digital (que contém o efeito do processamento analógico). Depois, combinando essas estimações, foi feita uma estimação da matriz do canal de propagação, sem o efeito desse processamento analógico. Finalmente, através da matriz do canal de propagação, foi determinado o ângulo que maximiza o RSRP, e calculado o feixe através do vetor de resposta do agregado. Os resultados obtidos demonstram que o algoritmo proposto atinge melhor desempenho quando comparado com o algoritmo convencional de seleção de par de feixes. Foi feita ainda uma comparação com o caso ótimo, isto é, com o caso em que se conhece completamente o canal e se obtém um ângulo ótimo. Os resultados obtidos pelo algoritmo proposto foram muito próximos do caso ótimo, pelo que é bastante interessante para sistemas práticos 5G mmWave mMIMO, que estejam de acordo com o padrão 3GPP.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Co-channel interference cancellation for space-time coded OFDM systems

    No full text
    Space-time coded orthogonal frequency division multiplexing (OFDM) is a promising scheme for future wideband multimedia wireless communication systems. The combination of space-time coding (STC) and OFDM modulation promises an enhanced performance in terms of power and spectral efficiency. Such combination benefits' from the diversity gain within the multiple-input-multiple-output ST coded system and the matured OFDM modulation for wideband wireless transmission. However, STC transmit diversity impairs the system's interference suppression ability due to the use of multiple transmitters at each mobile. In this paper, we propose an effective co-channel interference (CCI) cancellation method that employs angle diversity based on null-steering beamforming or,minimum variance distortion response beamforming. It is shown that the proposed method can effectively mitigate CCI while preserving the space-time structure, thereby, significantly improving the system's interference suppression ability without significant bit-error rate performance degradation. Furthermore, it is demonstrated that the proposed method can significantly combat the delay spread detrimental effects over multipath fading channels without the use of interleaving

    Channelization, Link Adaptation and Multi-antenna Techniques for OFDM(A) Based Wireless Systems

    Get PDF

    Spatial diversity in MIMO communication systems with distributed or co-located antennas

    Get PDF
    The use of multiple antennas in wireless communication systems has gained much attention during the last decade. It was shown that such multiple-input multiple-output (MIMO) systems offer huge advantages over single-antenna systems. Typically, quite restrictive assumptions are made concerning the spacing of the individual antenna elements. On the one hand, it is typically assumed that the antenna elements at transmitter and receiver are co-located, i.e., they belong to some sort of antenna array. On the other hand, it is often assumed that the antenna spacings are sufficiently large, so as to justify the assumption of independent fading. In this thesis, the above assumptions are relaxed. In the first part, it is shown that MIMO systems with distributed antennas and MIMO systems with co-located antennas can be treated in a single, unifying framework. In the second part this fact is utilized, in order to develop appropriate transmit power allocation strategies for co-located and distributed MIMO systems. Finally, the third part focuses on specific synchronization problems that are of interest for distributed MIMO systems
    corecore