176,921 research outputs found

    Full-disc 13^{13}CO(1-0) mapping across nearby galaxies of the EMPIRE survey and the CO-to-H2_2 conversion factor

    Full text link
    Carbon monoxide (CO) provides crucial information about the molecular gas properties of galaxies. While 12^{12}CO has been targeted extensively, isotopologues such as 13^{13}CO have the advantage of being less optically thick and observations have recently become accessible across full galaxy discs. We present a comprehensive new dataset of 13^{13}CO(1-0) observations with the IRAM 30-m telescope of the full discs of 9 nearby spiral galaxies from the EMPIRE survey at a spatial resolution of ∼\sim1.5kpc. 13^{13}CO(1-0) is mapped out to 0.7−1r250.7-1r_{25} and detected at high signal-to-noise throughout our maps. We analyse the 12^{12}CO(1-0)-to-13^{13}CO(1-0) ratio (ℜ\Re) as a function of galactocentric radius and other parameters such as the 12^{12}CO(2-1)-to-12^{12}CO(1-0) intensity ratio, the 70-to-160μ\mum flux density ratio, the star-formation rate surface density, the star-formation efficiency, and the CO-to-H2_2 conversion factor. We find that ℜ\Re varies by a factor of 2 at most within and amongst galaxies, with a median value of 11 and larger variations in the galaxy centres than in the discs. We argue that optical depth effects, most likely due to changes in the mixture of diffuse/dense gas, are favored explanations for the observed ℜ\Re variations, while abundance changes may also be at play. We calculate a spatially-resolved 13^{13}CO(1-0)-to-H2_2 conversion factor and find an average value of 1.0×10211.0\times10^{21} cm−2^{-2} (K.km/s)−1^{-1} over our sample with a standard deviation of a factor of 2. We find that 13^{13}CO(1-0) does not appear to be a good predictor of the bulk molecular gas mass in normal galaxy discs due to the presence of a large diffuse phase, but it may be a better tracer of the mass than 12^{12}CO(1-0) in the galaxy centres where the fraction of dense gas is larger.Comment: accepted for publication in MNRA

    Extended Cold Molecular Gas Reservoirs in z~3.4 Submillimeter Galaxies

    Get PDF
    We report the detection of spatially resolved CO(1-0) emission in the z~3.4 submillimeter galaxies (SMGs) SMM J09431+4700 and SMM J13120+4242, using the Expanded Very Large Array (EVLA). SMM J09431+4700 is resolved into the two previously reported millimeter sources H6 and H7, separated by ~30kpc in projection. We derive CO(1-0) line luminosities of L'(CO 1-0) = (2.49+/-0.86) and (5.82+/-1.22) x 10^10 K km/s pc^2 for H6 and H7, and L'(CO 1-0) = (23.4+/-4.1) x 10^10 K km/s pc^2 for SMM J13120+4242. These are ~1.5-4.5x higher than what is expected from simple excitation modeling of higher-J CO lines, suggesting the presence of copious amounts of low-excitation gas. This is supported by the finding that the CO(1-0) line in SMM J13120+4242, the system with lowest CO excitation, appears to have a broader profile and more extended spatial structure than seen in higher-J CO lines (which is less prominently seen in SMM J09431+4700). Based on L'(CO 1-0) and excitation modeling, we find M_gas = 2.0-4.3 and 4.7-12.7 x 10^10 Msun for H6 and H7, and M_gas = 18.7-69.4 x 10^10 Msun for SMM J13120+4242. The observed CO(1-0) properties are consistent with the picture that SMM J09431+4700 represents an early-stage, gas-rich major merger, and that SMM J13120+4242 represents such a system in an advanced stage. This study thus highlights the importance of spatially and dynamically resolved CO(1-0) observations of SMGs to further understand the gas physics that drive star formation in these distant galaxies, which becomes possible only now that the EVLA rises to its full capabilities.Comment: 6 pages, 4 figures, to appear in ApJL (EVLA Special Issue; accepted May 19, 2011

    CO(1-0) in z>2 Quasar Host Galaxies: No Evidence for Extended Molecular Gas Reservoirs

    Get PDF
    We report the detection of CO(1-0) emission in the strongly lensed high-redshift quasars IRAS F10214+4724 (z=2.286), the Cloverleaf (z=2.558), RX J0911+0551 (z=2.796), SMM J04135+10277 (z=2.846), and MG 0751+2716 (z=3.200), using the Expanded Very Large Array and the Green Bank Telescope. We report lensing-corrected CO(1-0) line luminosities of L'(CO) = 0.34-18.4 x 10^10 K km/s pc^2 and total molecular gas masses of M(H2) = 0.27-14.7 x 10^10 Msun for the sources in our sample. Based on CO line ratios relative to previously reported observations in J>=3 rotational transitions and line excitation modeling, we find that the CO(1-0) line strengths in our targets are consistent with single, highly-excited gas components with constant brightness temperature up to mid-J levels. We thus do not find any evidence for luminous extended, low excitation, low surface brightness molecular gas components. These properties are comparable to those found in z>4 quasars with existing CO(1-0) observations. These findings stand in contrast to recent CO(1-0) observations of z~2-4 submillimeter galaxies (SMGs), which have lower CO excitation and show evidence for multiple excitation components, including some low-excitation gas. These findings are consistent with the picture that gas-rich quasars and SMGs represent different stages in the early evolution of massive galaxies.Comment: 6 pages, 4 figures, 1 table, to appear in ApJL (EVLA Special Issue; accepted June 10, 2011

    The Molecular Gas Reservoirs of z∼2z\sim 2 Galaxies: A comparison of CO(1-0) and dust-based molecular gas masses

    Get PDF
    We test the use of long-wavelength dust continuum emission as a molecular gas tracer at high redshift, via a unique sample of 12, z~2 galaxies with observations of both the dust continuum and CO(1-0) line emission (obtained with the Atacama Large Millimeter Array and Karl G. Jansky Very Large Array, respectively). Our work is motivated by recent, high redshift studies that measure molecular gas masses (\ensuremath{\rm{M}_{\rm{mol}}}) via a calibration of the rest-frame 850μ850\mum luminosity (L850μm,restL_\mathrm{850\mu m,rest}) against the CO(1-0)-derived \ensuremath{\rm{M}_{\rm{mol}}}\ of star-forming galaxies. We hereby test whether this method is valid for the types of high-redshift, star-forming galaxies to which it has been applied. We recover a clear correlation between the rest-frame 850μ850\mum luminosity, inferred from the single-band, long-wavelength flux, and the CO(1-0) line luminosity, consistent with the samples used to perform the 850μ850\mum calibration. The molecular gas masses, derived from L850μm,restL_\mathrm{850\mu m,rest}, agree to within a factor of two with those derived from CO(1-0). We show that this factor of two uncertainty can arise from the values of the dust emissivity index and temperature that need to be assumed in order to extrapolate from the observed frequency to the rest-frame at 850μm\mathrm{\mu m}. The extrapolation to 850μm\mathrm{\mu m} therefore has a smaller effect on the accuracy of \Mmol\ derived via single-band dust-continuum observations than the assumed CO(1-0)-to-\ensuremath{\rm{M}_{\rm{mol}}}\ conversion factor. We therefore conclude that single-band observations of long-wavelength dust emission can be used to reliably constrain the molecular gas masses of massive, star-forming galaxies at z≳2z\gtrsim2

    Study of pharmaceutical industrial problems

    Get PDF
    The growth of a human colon carcinoma cell line (SK-CO-1) and its production of carcinoembryonic antigen (CEA) in monolayer culture and on single layers of glass beads in unit gravity were evaluated. The limitations of using a microsphere-cell growth system in unit gravity were identified and how these may be overcome in space was considered. The project had the following tasks: (1) growth of cultured human colon carcinoma cells on a monolayer and CEA production; (2) evaluation of CEA production and release by SK-CO-1 cells grown on glass beads; (3) evaluation of other microcarriers for growing SK-CO-1 cells and determination of the minimum amount of culture medium needed for cell growth; and (4) growth of SK-CO-1 cells on collagen monolayers and CEA production

    Beneath the Baselines: Detecting Molecular Emission from Submillimeter Galaxies with the GBT

    Get PDF
    We report the first detection of a submillimeter galaxy (SMG) in CO(1 →0) emission using the GBT. We identify a line with Δv_(FWHM) ~1000 kms^(−1) in the 1 cm spectrum of SMM J13120+4242 at z = 3.408, which is significantly greater than the width of the previously detected CO(4→3) line. If the observed CO(1→0) line profile arises from a single object and not several merging objects, the CO(4 →3)/CO(1→0) brightness temperature ratio of ~0.26 suggests n(H_2) > 10^3 cm^(−3) and the presence of sub-thermally excited gas. The 10σ integrated line flux implies a cold molecular gas mass M(H2) ~10^(11)M_⊙, comparable to the dynamical mass estimate and four times larger than the H_2 mass found from the CO(4 →3) line. While our observations confirm that this SMG is massive and highly gas-rich, they also suggest that J_(upper) > 3 transitions of CO may not accurately trace cold, diffuse molecular gas in SMGs
    • …
    corecore