5,179 research outputs found

    Knowledge-aided bayesian detection in heterogeneous environments

    Get PDF
    We address the problem of detecting a signal of interest in the presence of noise with unknown covariance matrix, using a set of training samples. We consider a situation where the environment is not homogeneous, i.e., when the covariance matrices of the primary and the secondary data are different. A knowledge-aided Bayesian framework is proposed, where these covariance matrices are considered as random, and some information about the covariance matrix of the training samples is available. Within this framework, the maximum a priori (MAP) estimate of the primary data covariance matrix is derived. It is shown that it amounts to colored loading of the sample covariance matrix of the secondary data. The MAP estimate is in turn used to yield a Bayesian version of the adaptive matched filter. Numerical simulations illustrate the performance of this detector, and compare it with the conventional adaptive matched filter

    Knowledge-aided STAP in heterogeneous clutter using a hierarchical bayesian algorithm

    Get PDF
    This paper addresses the problem of estimating the covariance matrix of a primary vector from heterogeneous samples and some prior knowledge, under the framework of knowledge-aided space-time adaptive processing (KA-STAP). More precisely, a Gaussian scenario is considered where the covariance matrix of the secondary data may differ from the one of interest. Additionally, some knowledge on the primary data is supposed to be available and summarized into a prior matrix. Two KA-estimation schemes are presented in a Bayesian framework whereby the minimum mean square error (MMSE) estimates are derived. The first scheme is an extension of a previous work and takes into account the non-homogeneity via an original relation. {In search of simplicity and to reduce the computational load, a second estimation scheme, less complex, is proposed and omits the fact that the environment may be heterogeneous.} Along the estimation process, not only the covariance matrix is estimated but also some parameters representing the degree of \emph{a priori} and/or the degree of heterogeneity. Performance of the two approaches are then compared using STAP synthetic data. STAP filter shapes are analyzed and also compared with a colored loading technique

    Covariance matrix estimation with heterogeneous samples

    Get PDF
    We consider the problem of estimating the covariance matrix Mp of an observation vector, using heterogeneous training samples, i.e., samples whose covariance matrices are not exactly Mp. More precisely, we assume that the training samples can be clustered into K groups, each one containing Lk, snapshots sharing the same covariance matrix Mk. Furthermore, a Bayesian approach is proposed in which the matrices Mk. are assumed to be random with some prior distribution. We consider two different assumptions for Mp. In a fully Bayesian framework, Mp is assumed to be random with a given prior distribution. Under this assumption, we derive the minimum mean-square error (MMSE) estimator of Mp which is implemented using a Gibbs-sampling strategy. Moreover, a simpler scheme based on a weighted sample covariance matrix (SCM) is also considered. The weights minimizing the mean square error (MSE) of the estimated covariance matrix are derived. Furthermore, we consider estimators based on colored or diagonal loading of the weighted SCM, and we determine theoretically the optimal level of loading. Finally, in order to relax the a priori assumptions about the covariance matrix Mp, the second part of the paper assumes that this matrix is deterministic and derives its maximum-likelihood estimator. Numerical simulations are presented to illustrate the performance of the different estimation schemes

    A bayesian approach to adaptive detection in nonhomogeneous environments

    Get PDF
    We consider the adaptive detection of a signal of interest embedded in colored noise, when the environment is nonhomogeneous, i.e., when the training samples used for adaptation do not share the same covariance matrix as the vector under test. A Bayesian framework is proposed where the covariance matrices of the primary and the secondary data are assumed to be random, with some appropriate joint distribution. The prior distributions of these matrices require a rough knowledge about the environment. This provides a flexible, yet simple, knowledge-aided model where the degree of nonhomogeneity can be tuned through some scalar variables. Within this framework, an approximate generalized likelihood ratio test is formulated. Accordingly, two Bayesian versions of the adaptive matched filter are presented, where the conventional maximum likelihood estimate of the primary data covariance matrix is replaced either by its minimum mean-square error estimate or by its maximum a posteriori estimate. Two detectors require generating samples distributed according to the joint posterior distribution of primary and secondary data covariance matrices. This is achieved through the use of a Gibbs sampling strategy. Numerical simulations illustrate the performances of these detectors, and compare them with those of the conventional adaptive matched filter

    Adaptive detection of distributed targets in compound-Gaussian noise without secondary data: A Bayesian approach

    Get PDF
    In this paper, we deal with the problem of adaptive detection of distributed targets embedded in colored noise modeled in terms of a compound-Gaussian process and without assuming that a set of secondary data is available.The covariance matrices of the data under test share a common structure while having different power levels. A Bayesian approach is proposed here, where the structure and possibly the power levels are assumed to be random, with appropriate distributions. Within this framework we propose GLRT-based and ad-hoc detectors. Some simulation studies are presented to illustrate the performances of the proposed algorithms. The analysis indicates that the Bayesian framework could be a viable means to alleviate the need for secondary data, a critical issue in heterogeneous scenarios

    Knowledge-aided covariance matrix estimation and adaptive detection in compound-Gaussian noise

    Get PDF
    We address the problem of adaptive detection of a signal of interest embedded in colored noise modeled in terms of a compound-Gaussian process. The covariance matrices of the primary and the secondary data share a common structure while having different power levels. A Bayesian approach is proposed here, where both the power levels and the structure are assumed to be random, with some appropriate distributions. Within this framework we propose MMSE and MAP estimators of the covariance structure and their application to adaptive detection using the NMF test statistic and an optimized GLRT herein derived. Some results, also conducted in comparison with existing algorithms, are presented to illustrate the performances of the proposed algorithms. The relevant result is that the solutions presented herein allows to improve the performance over conventional ones, especially in presence of a small number of training data

    Salient Objects in Clutter: Bringing Salient Object Detection to the Foreground

    Full text link
    We provide a comprehensive evaluation of salient object detection (SOD) models. Our analysis identifies a serious design bias of existing SOD datasets which assumes that each image contains at least one clearly outstanding salient object in low clutter. The design bias has led to a saturated high performance for state-of-the-art SOD models when evaluated on existing datasets. The models, however, still perform far from being satisfactory when applied to real-world daily scenes. Based on our analyses, we first identify 7 crucial aspects that a comprehensive and balanced dataset should fulfill. Then, we propose a new high quality dataset and update the previous saliency benchmark. Specifically, our SOC (Salient Objects in Clutter) dataset, includes images with salient and non-salient objects from daily object categories. Beyond object category annotations, each salient image is accompanied by attributes that reflect common challenges in real-world scenes. Finally, we report attribute-based performance assessment on our dataset.Comment: ECCV 201

    Efficient Asymmetric Co-Tracking using Uncertainty Sampling

    Full text link
    Adaptive tracking-by-detection approaches are popular for tracking arbitrary objects. They treat the tracking problem as a classification task and use online learning techniques to update the object model. However, these approaches are heavily invested in the efficiency and effectiveness of their detectors. Evaluating a massive number of samples for each frame (e.g., obtained by a sliding window) forces the detector to trade the accuracy in favor of speed. Furthermore, misclassification of borderline samples in the detector introduce accumulating errors in tracking. In this study, we propose a co-tracking based on the efficient cooperation of two detectors: a rapid adaptive exemplar-based detector and another more sophisticated but slower detector with a long-term memory. The sampling labeling and co-learning of the detectors are conducted by an uncertainty sampling unit, which improves the speed and accuracy of the system. We also introduce a budgeting mechanism which prevents the unbounded growth in the number of examples in the first detector to maintain its rapid response. Experiments demonstrate the efficiency and effectiveness of the proposed tracker against its baselines and its superior performance against state-of-the-art trackers on various benchmark videos.Comment: Submitted to IEEE ICSIPA'201

    A Geometric Approach to Covariance Matrix Estimation and its Applications to Radar Problems

    Full text link
    A new class of disturbance covariance matrix estimators for radar signal processing applications is introduced following a geometric paradigm. Each estimator is associated with a given unitary invariant norm and performs the sample covariance matrix projection into a specific set of structured covariance matrices. Regardless of the considered norm, an efficient solution technique to handle the resulting constrained optimization problem is developed. Specifically, it is shown that the new family of distribution-free estimators shares a shrinkagetype form; besides, the eigenvalues estimate just requires the solution of a one-dimensional convex problem whose objective function depends on the considered unitary norm. For the two most common norm instances, i.e., Frobenius and spectral, very efficient algorithms are developed to solve the aforementioned one-dimensional optimization leading to almost closed form covariance estimates. At the analysis stage, the performance of the new estimators is assessed in terms of achievable Signal to Interference plus Noise Ratio (SINR) both for a spatial and a Doppler processing assuming different data statistical characterizations. The results show that interesting SINR improvements with respect to some counterparts available in the open literature can be achieved especially in training starved regimes.Comment: submitted for journal publicatio
    • 

    corecore