113 research outputs found

    Towards the Use of Clustering Algorithms in Recommender Systems

    Get PDF
    Recommender Systems have been intensively used in Information Systems in the last decades, facilitating the choice of items individually for each user based on your historical. Clustering techniques have been frequently used in commercial and scientific domains in data mining tasks and visualization tools. However, there is a lack of secondary studies in the literature that analyze the use of clustering algorithms in Recommender Systems and their behavior in different aspects. In this work, we present a Systematic Literature Review (SLR), which discusses the different types of information systems with the use of the clustering algorithm in Recommender Systems, which typically involves three main recommendation approaches found in literature: collaborative filtering, content-based filtering, and hybrid recommendation. In the end, we did a quantitative analysis using K-means clustering for finding patterns between clustering algorithms, recommendation approaches, and some datasets used in their publications

    AUTOMATING UNSUPERVISED SECURITY GUARDRAIL CREATION FOR LARGE LANGUAGE MODELS

    Get PDF
    Guardrails are a set of limitations, guidelines, and operational protocols designed to govern the behavior and outputs of Large Language Models (LLMs). Current guardrail creation methods often face limitations such as lack of transparency, overly restrictive rules, and difficulty keeping pace with the evolving threat landscape. To overcome these limitations, techniques are proposed herein that provide automation for the generation of guardrails, or safeguarding rules, for LLMs using Reinforcement Learning (RL)

    Crowdsourcing for Engineering Design: Objective Evaluations and Subjective Preferences

    Full text link
    Crowdsourcing enables designers to reach out to large numbers of people who may not have been previously considered when designing a new product, listen to their input by aggregating their preferences and evaluations over potential designs, aiming to improve ``good'' and catch ``bad'' design decisions during the early-stage design process. This approach puts human designers--be they industrial designers, engineers, marketers, or executives--at the forefront, with computational crowdsourcing systems on the backend to aggregate subjective preferences (e.g., which next-generation Brand A design best competes stylistically with next-generation Brand B designs?) or objective evaluations (e.g., which military vehicle design has the best situational awareness?). These crowdsourcing aggregation systems are built using probabilistic approaches that account for the irrationality of human behavior (i.e., violations of reflexivity, symmetry, and transitivity), approximated by modern machine learning algorithms and optimization techniques as necessitated by the scale of data (millions of data points, hundreds of thousands of dimensions). This dissertation presents research findings suggesting the unsuitability of current off-the-shelf crowdsourcing aggregation algorithms for real engineering design tasks due to the sparsity of expertise in the crowd, and methods that mitigate this limitation by incorporating appropriate information for expertise prediction. Next, we introduce and interpret a number of new probabilistic models for crowdsourced design to provide large-scale preference prediction and full design space generation, building on statistical and machine learning techniques such as sampling methods, variational inference, and deep representation learning. Finally, we show how these models and algorithms can advance crowdsourcing systems by abstracting away the underlying appropriate yet unwieldy mathematics, to easier-to-use visual interfaces practical for engineering design companies and governmental agencies engaged in complex engineering systems design.PhDDesign ScienceUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133438/1/aburnap_1.pd

    Data-Driven Models, Techniques, and Design Principles for Combatting Healthcare Fraud

    Get PDF
    In the U.S., approximately 700billionofthe700 billion of the 2.7 trillion spent on healthcare is linked to fraud, waste, and abuse. This presents a significant challenge for healthcare payers as they navigate fraudulent activities from dishonest practitioners, sophisticated criminal networks, and even well-intentioned providers who inadvertently submit incorrect billing for legitimate services. This thesis adopts Hevner’s research methodology to guide the creation, assessment, and refinement of a healthcare fraud detection framework and recommended design principles for fraud detection. The thesis provides the following significant contributions to the field:1. A formal literature review of the field of fraud detection in Medicaid. Chapters 3 and 4 provide formal reviews of the available literature on healthcare fraud. Chapter 3 focuses on defining the types of fraud found in healthcare. Chapter 4 reviews fraud detection techniques in literature across healthcare and other industries. Chapter 5 focuses on literature covering fraud detection methodologies utilized explicitly in healthcare.2. A multidimensional data model and analysis techniques for fraud detection in healthcare. Chapter 5 applies Hevner et al. to help develop a framework for fraud detection in Medicaid that provides specific data models and techniques to identify the most prevalent fraud schemes. A multidimensional schema based on Medicaid data and a set of multidimensional models and techniques to detect fraud are presented. These artifacts are evaluated through functional testing against known fraud schemes. This chapter contributes a set of multidimensional data models and analysis techniques that can be used to detect the most prevalent known fraud types.3. A framework for deploying outlier-based fraud detection methods in healthcare. Chapter 6 proposes and evaluates methods for applying outlier detection to healthcare fraud based on literature review, comparative research, direct application on healthcare claims data, and known fraudulent cases. A method for outlier-based fraud detection is presented and evaluated using Medicaid dental claims, providers, and patients.4. Design principles for fraud detection in complex systems. Based on literature and applied research in Medicaid healthcare fraud detection, Chapter 7 offers generalized design principles for fraud detection in similar complex, multi-stakeholder systems.<br/

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    Online social networks: Measurement, analysis, and applications to distributed information systems

    Get PDF
    Recently, online social networking sites have exploded in popularity. Numerous sites are dedicated to finding and maintaining contacts and to locating and sharing different types of content. Online social networks represent a new kind of information network that differs significantly from existing networks like the Web. For example, in the Web, hyperlinks between content form a graph that is used to organize, navigate, and rank information. The properties of the Web graph have been studied extensively, and have lead to useful algorithms such as PageRank. In contrast, few links exist between content in online social networks and instead, the links exist between content and users, and between users themselves. However, little is known in the research community about the properties of online social network graphs at scale, the factors that shape their structure, or the ways they can be leveraged in information systems. In this thesis, we use novel measurement techniques to study online social networks at scale, and use the resulting insights to design innovative new information systems. First, we examine the structure and growth patterns of online social networks, focusing on how users are connecting to one another. We conduct the first large-scale measurement study of multiple online social networks at scale, capturing information about over 50 million users and 400 million links. Our analysis identifies a common structure across multiple networks, characterizes the underlying processes that are shaping the network structure, and exposes the rich community structure. Second, we leverage our understanding of the properties of online social networks to design new information systems. Specifically, we build two distinct applications that leverage different properties of online social networks. We present and evaluate Ostra, a novel system for preventing unwanted communication that leverages the difficulty in establishing and maintaining relationships in social networks. We also present, deploy, and evaluate PeerSpective, a system for enhancing Web search using the natural community, structure in social networks. Each of these systems has been evaluated on data from real online social networks or in a deployment with real users

    Promoting Honesty in Electronic Marketplaces: Combining Trust Modeling and Incentive Mechanism Design

    Get PDF
    This thesis work is in the area of modeling trust in multi-agent systems, systems of software agents designed to act on behalf of users (buyers and sellers), in applications such as e-commerce. The focus is on developing an approach for buyers to model the trustworthiness of sellers in order to make effective decisions about which sellers to select for business. One challenge is the problem of unfair ratings, which arises when modeling the trust of sellers relies on ratings provided by other buyers (called advisors). Existing approaches for coping with this problem fail in scenarios where the majority of advisors are dishonest, buyers do not have much personal experience with sellers, advisors try to flood the trust modeling system with unfair ratings, and sellers vary their behavior widely. We propose a novel personalized approach for effectively modeling trustworthiness of advisors, allowing a buyer to 1) model the private reputation of an advisor based on their ratings for commonly rated sellers 2) model the public reputation of the advisor based on all ratings for the sellers ever rated by that agent 3) flexibly weight the private and public reputation into one combined measure of the trustworthiness of the advisor. Our approach tracks ratings provided according to their time windows and limits the ratings accepted, in order to cope with advisors flooding the system and to deal with changes in agents' behavior. Experimental evidence demonstrates that our model outperforms other models in detecting dishonest advisors and is able to assist buyers to gain the largest profit when doing business with sellers. Equipped with this richer method for modeling trustworthiness of advisors, we then embed this reasoning into a novel trust-based incentive mechanism to encourage agents to be honest. In this mechanism, buyers select the most trustworthy advisors as their neighbors from which they can ask advice about sellers, forming a social network. In contrast with other researchers, we also have sellers model the reputation of buyers. Sellers will offer better rewards to satisfy buyers that are well respected in the social network, in order to build their own reputation. We provide precise formulae used by sellers when reasoning about immediate and future profit to determine their bidding behavior and the rewards to buyers, and emphasize the importance for buyers to adopt a strategy to limit the number of sellers that are considered for each good to be purchased. We theoretically prove that our mechanism promotes honesty from buyers in reporting seller ratings, and honesty from sellers in delivering products as promised. We also provide a series of experimental results in a simulated dynamic environment where agents may be arriving and departing. This provides a stronger defense of the mechanism as one that is robust to important conditions in the marketplace. Our experiments clearly show the gains in profit enjoyed by both honest sellers and honest buyers when our mechanism is introduced and our proposed strategies are followed. In general, our research will serve to promote honesty amongst buyers and sellers in e-marketplaces. Our particular proposal of allowing sellers to model buyers opens a new direction in trust modeling research. The novel direction of designing an incentive mechanism based on trust modeling and using this mechanism to further help trust modeling by diminishing the problem of unfair ratings will hope to bridge researchers in the areas of trust modeling and mechanism design
    • …
    corecore