890 research outputs found

    Unsupervised User Stance Detection on Twitter

    Full text link
    We present a highly effective unsupervised framework for detecting the stance of prolific Twitter users with respect to controversial topics. In particular, we use dimensionality reduction to project users onto a low-dimensional space, followed by clustering, which allows us to find core users that are representative of the different stances. Our framework has three major advantages over pre-existing methods, which are based on supervised or semi-supervised classification. First, we do not require any prior labeling of users: instead, we create clusters, which are much easier to label manually afterwards, e.g., in a matter of seconds or minutes instead of hours. Second, there is no need for domain- or topic-level knowledge either to specify the relevant stances (labels) or to conduct the actual labeling. Third, our framework is robust in the face of data skewness, e.g., when some users or some stances have greater representation in the data. We experiment with different combinations of user similarity features, dataset sizes, dimensionality reduction methods, and clustering algorithms to ascertain the most effective and most computationally efficient combinations across three different datasets (in English and Turkish). We further verified our results on additional tweet sets covering six different controversial topics. Our best combination in terms of effectiveness and efficiency uses retweeted accounts as features, UMAP for dimensionality reduction, and Mean Shift for clustering, and yields a small number of high-quality user clusters, typically just 2--3, with more than 98\% purity. The resulting user clusters can be used to train downstream classifiers. Moreover, our framework is robust to variations in the hyper-parameter values and also with respect to random initialization

    Measuring relative opinion from location-based social media: A case study of the 2016 U.S. presidential election

    Get PDF
    Social media has become an emerging alternative to opinion polls for public opinion collection, while it is still posing many challenges as a passive data source, such as structurelessness, quantifiability, and representativeness. Social media data with geotags provide new opportunities to unveil the geographic locations of users expressing their opinions. This paper aims to answer two questions: 1) whether quantifiable measurement of public opinion can be obtained from social media and 2) whether it can produce better or complementary measures compared to opinion polls. This research proposes a novel approach to measure the relative opinion of Twitter users towards public issues in order to accommodate more complex opinion structures and take advantage of the geography pertaining to the public issues. To ensure that this new measure is technically feasible, a modeling framework is developed including building a training dataset by adopting a state-of-the-art approach and devising a new deep learning method called Opinion-Oriented Word Embedding. With a case study of the tweets selected for the 2016 U.S. presidential election, we demonstrate the predictive superiority of our relative opinion approach and we show how it can aid visual analytics and support opinion predictions. Although the relative opinion measure is proved to be more robust compared to polling, our study also suggests that the former can advantageously complement the later in opinion prediction

    Spatial And Temporal Patterns Of Geo-Tagged Tweets

    Get PDF
    With over 500 million current registered users and over 500 million tweets per day, Twitter has caught the attention of scientists in various disciplines. As Twitter allows users to send messages with location tags, a massive amount of valuable geo-social knowledge is embedded in tweets, which can provide useful implications for human geography, urban science, location-based service, targeted advertising, and social network studies. This thesis aims to determine the lifestyle patterns of college students by analyzing the spatial and temporal dynamics in their tweets. Geo-tagged tweets are collected over a period of six months for four US Midwestern college cites: 1) West Lafayette, Indiana (Purdue University); 2) Bloomington, Indiana (Indiana University); 3) Ann Arbor, Michigan (University of Michigan); 4) Columbus, Ohio (The Ohio State University). The overall distribution of the tweets was determined for each city, and the spatial patterns of representative individuals were examined as well. Grouping the tweets in time domains, the temporal patterns on an hourly, daily, and monthly basis were analyzed. Utilizing detailed land use data for each city, further insight about the thematic properties of the tweeting locations was obtained, leading to a deeper understanding about the life, mobility and flow patterns of Twitter users. Finally, space-time clusters and anomalies within tweets, which were considered events, were found with the space-time statistics. The results generally reflected everyday human activity patterns including the mobile population in each city as well as the commute behaviors of the representative users. The tweets also consistently revealed the occurrence of anomalies or events. The results of this thesis therefore confirmed the feasibility and promising future for using geo-tagged micro-blogging services such as Twitter in understanding human behavior patterns and other geo-social related studies

    Social Space and Social Media: Analyzing Urban Space with Big Data

    Get PDF
    This dissertation focuses on the key role that big data can play in minimizing the perceived disconnect between social theory and quantitative methods in the discipline of geography. It takes as its starting point the geographic concept of space, which is conceptualized very differently in social theory versus quantitative methodology. Contrary to this disparity, an examination of the disciplinary history reveals a number of historic precedents and potential pathways for a rapprochement, especially when combined with some of the new possibilities of big data. This dissertation also proposes solutions to two common barriers to the adoption of big data in the social sciences: accessing and collecting such data and, subsequently, meaningful analysis. These methods and the theoretical foundation are combined in three case studies that show the successful integration of a quantitative research methodology with social theories on space. The case studies demonstrate how such an approach can create new and alternative understandings of urban space. In doing so it answers three specific research questions: (1) How can big data facilitate the integration of social theory on space with quantitative research methodology? (2) What are the practical challenges and solutions to moving “beyond the geotag” when utilizing big data in geographical research? (3) How can the quantitative analysis of big data provide new and useful insight in the complex character of social space? More specifically, what insights does such an analysis of relational social space provide about urban mobility and cognitive neighborhoods

    TweeProfiles4: a weighted multidimensional stream clustering algorithm

    Get PDF
    O aparecimento das redes sociais abriu aos utilizadores a possibilidade de facilmente partilharem as suas ideias a respeito de diferentes temas, o que constitui uma fonte de informação enriquecedora para diversos campos. As plataformas de microblogging sofreram um grande crescimento e de forma constante nos últimos anos. O Twitter é o site de microblogging mais popular, tornando-se uma fonte de dados interessante para extração de conhecimento. Um dos principais desafios na análise de dados provenientes de redes sociais é o seu fluxo, o que dificulta a aplicação de processos tradicionais de data mining. Neste sentido, a extração de conhecimento sobre fluxos de dados tem recebido um foco significativo recentemente. O TweeProfiles é a uma ferramenta de data mining para análise e visualização de dados do Twitter sobre quatro dimensões: espacial (a localização geográfica do tweet), temporal (a data de publicação do tweet), de conteúdo (o texto do tweet) e social (o grafo dos relacionamentos). Este é um projeto em desenvolvimento que ainda possui muitos aspetos que podem ser melhorados. Uma das recentes melhorias inclui a substituição do algoritmo de clustering original, o qual não suportava o fluxo contínuo dos dados, por um método de streaming. O objetivo desta dissertação passa pela continuação do desenvolvimento do TweeProfiles. Em primeiro lugar, será proposto um novo algoritmo de clustering para fluxos de dados com o objetivo de melhorar o existente. Para esse efeito será desenvolvido um algoritmo incremental com suporte para fluxos de dados multi-dimensionais. Esta abordagem deve permitir ao utilizador alterar dinamicamente a importância relativa de cada dimensão do processo de clustering. Adicionalmente, a avaliação empírica dos resultados será alvo de melhoramento através da identificação e implementação de medidas adequadas de avaliação dos padrões extraídos. O estudo empírico será realizado através de tweets georreferenciados obtidos pelo SocialBus.The emergence of social media made it possible for users to easily share their thoughts on different topics, which constitutes a rich source of information for many fields. Microblogging platforms experienced a large and steady growth over the last few years. Twitter is the most popular microblogging site, making it an interesting source of data for pattern extraction. One of the main challenges of analyzing social media data is its continuous nature, which makes it hard to use traditional data mining. Therefore, mining stream data has also received a lot of attention recently.TweeProfiles is a data mining tool for analyzing and visualizing Twitter data over four dimensions: spatial (the location of the tweet), temporal (the timestamp of the tweet), content (the text of the tweet) and social (relationship graph). This is an ongoing project which still has many aspects that can be improved. For instance, it was recently improved by replacing the original clustering algorithm which could not handle the continuous flow of data with a streaming method. The goal of this dissertation is to continue the development of TweeProfiles. First, the stream clustering process will be improved by proposing a new algorithm. This will be achieved by developing an incremental algorithm with support for multi-dimensional streaming data. Moreover, it should make it possible for the user to dynamically change the relative importance of each dimension in the clustering. Additionally, the empirical evaluation of the results will also be improved.Suitable measures to evaluate the extracted patterns will be identified and implemented. An empirical study will be done using data consisting of georeferenced tweets from SocialBus
    corecore