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Abstract

Social media has become an emerging alternative to opinion polls for public opinion collec-

tion, while it is still posing many challenges as a passive data source, such as structureless-

ness, quantifiability, and representativeness. Social media data with geotags provide new

opportunities to unveil the geographic locations of users expressing their opinions. This

paper aims to answer two questions: 1) whether quantifiable measurement of public opinion

can be obtained from social media and 2) whether it can produce better or complementary

measures compared to opinion polls. This research proposes a novel approach to measure

the relative opinion of Twitter users towards public issues in order to accommodate more

complex opinion structures and take advantage of the geography pertaining to the public

issues. To ensure that this new measure is technically feasible, a modeling framework is

developed including building a training dataset by adopting a state-of-the-art approach and

devising a new deep learning method called Opinion-Oriented Word Embedding. With a

case study of tweets on the 2016 U.S. presidential election, we demonstrate the predictive

superiority of our relative opinion approach and we show how it can aid visual analytics and

support opinion predictions. Although the relative opinion measure is proved to be more

robust than polling, our study also suggests that the former can advantageously comple-

ment the latter in opinion prediction.

Introduction

Measuring and monitoring public opinion trends from social media has emerged as a potential

alternative to opinion polls due to its voluntary nature and penetration to a large number of

people [1]. Almost all social media platforms (e.g., Twitter and Facebook) allow users to tag

their locations on the posted messages, dubbed Location-based social media (LBSM). Bringing

a geographic perspective allows the study of opinion variation across geographic entities (e.g.,

states) that frame public events, e.g., political elections.
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However, as an organic and passive data source, social media data pose several analytical

challenges such as how to identify the target information from the unstructured and

unprompted data, how to quantify the highly qualitative textual messages, and how to ensure

the data can be representative of the broader electorate. Hence, two fundamental concerns

need to be grappled with: 1) whether quantifiable measurement of public opinion can be gar-

nered reliably from social media and 2) whether it can produce better or complementary mea-

sures compared to opinion polls [2,3].

Also, the practice of opinion polling has intrinsic limitations. All polls measure opinion in

an absolute sense, where opinions are classified as one of several predefined and mutually

exclusive categories, such as candidates A, B, and C. This way is conducive to overlooking

complex opinion structures that would be embedded in an opinion space comprising every

category as its own dimension. With each dimension featuring a gradient of preference level

for one category (e.g., a range from anti-A to pro-A), some very complex opinion position

could be triangulated from these dimensions, such as not very anti-A, somewhat pro-B, but no

preference to C.

This research aims to advance the measurement of public opinion captured from Twitter

posts, by addressing several of the points raised above. First, a relative opinion measure is pro-

posed, based on a concept of relational space framed by the modalities of functional relation-

ships between entities (e.g., individual persons or geographic areas). It enables the

construction of a multi-dimensional and continuous representation of opinion space to 1)

account for complex opinion structures arising from discrete extremes/categories (e.g. swing

states in U.S. presidential election) and 2) encompass sufficient dimensions that individually

characterize the opinion space from a certain aspect. Second, relative opinion positions of

Twitter users are learned from textual tweets and represented as points in the multi-dimen-

sional opinion space. A novel deep learning model known as opinion-oriented word embed-

ding is devised to learn vector representations of words from a corpus of textual posts whose

opinion indication is clearly captured by a set of selected hash tags. Third, the power of the rel-

ative opinion measure is twofold: 1) creating a spatial visualization of the opinion space where

users’ opinion positions can be aggregated to any level of geography based on users’ location

information; 2) supporting opinion predictions at an aggregate geographic level consistent

with the target public event (e.g., the state level for presidential elections) via a linear neighbor-

hood propagation method.

The rest of this paper is structured as follows. The next section reviews the measurement of

public opinion with regard to methodological approaches and data sources. The conceptuali-

zation and construction of relative opinion measure is then advanced with a general modeling

framework. It is followed by a detailed description and explanation of data collection and

methods supporting the implementation of this framework. With an application to tweets dur-

ing the 2016 U.S. presidential election, the implementation demonstrates the spatial visualiza-

tion of the relative opinion space for visual analytics; the following section extends this work to

opinion predictions in comparison to opinion polls. Finally, conclusions are drawn on the sci-

entific merit of the relative opinion measure and future work is discussed.

Literature review

Social media data as an alternative source for opinion measurement

Public opinion consists of people’s beliefs, attitudes and desires on public issues or problems.

For governments, political leaders, and policy makers, discerning public opinion is crucial to

inform administration, election campaign, and policy making [4]. Data are traditionally col-

lected by survey or opinion poll. These techniques involve a structured questionnaire, a
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defined population from which individuals are sampled, and a method of aggregation of indi-

vidual responses to infer a quantity of interest (as a measure of opinion) for the population, as

core components [2,5].

With the proliferation of web and mobile technologies, social media platforms, such as

Twitter and Facebook, have permeated large segments of population worldwide; they let peo-

ple express their thoughts, feelings, attitudes and opinions, which can be shared and accessed

publicly [4]. This presents not only a ubiquitous means to convey individual opinion but also

an unprecedented alternative source of public opinion data. In contrast to surveys, this new

form of public opinion data is characterized by unstructured and unprompted opinion expres-

sion. In essence, it belongs to a type of organic or passive data that users voluntarily post on

social media. That said, social media data can prevent the prompting or framing effects that

may exist in surveys when respondents and their responses are oriented and affected by how

the questionnaire designers select and frame the topics/issues [2,5–7].

Moreover, social media data have unparalleled advantages in temporal and geographic cov-

erages at very fine granularity. Users across countries and from different geographic regions

may post on a daily or even hourly basis. Indeed, it is likely to capture people’s instantaneous

and spontaneous responses to public events and issues and their changes over time, which is

impossible with survey data because of the cost and practicality [2,8]. Almost all social media

platforms allow users to tag their locations on the posted messages. At the finest level, the exact

location such as a pair of geographic coordinates can be reported, although larger geographic

regions are more common such as towns, cities or states. Geographic variation of public opin-

ions plays a critical role in many situations such as electoral-area-based elections (e.g., congres-

sional district and state). Due to the cost of opinion polls, social media data have been

proposed to interpolate state-level polls for U.S. presidential elections [9,10]. The timeliness

and geographic reach of social media data reinforce their appeal as opinion polls are facing

growing hurdles in reaching and persuading reluctant respondents [2].

Challenges of LBSM data for opinion measurement

Measuring public opinion with LBSM data is still confronting several main challenges. First,

given the unstructured and unprompted nature of social media data, how to determine the

topics and relevant posts from a huge pool of social media data is a great challenge. It has been

argued that simple ad hoc search criteria, such as the mention of candidate names on the bal-

lot, may cause systematic selection bias. Specifically, this approach may miss those relevant

messages that fail to mention candidates by name or add noise to the data when candidate

names happen to be confused with other names [2,11]. Therefore, the selection criteria need to

be carefully thought through and the potential selection bias needs to be assessed with the

interpretation of results. The difficulty of identifying topics also lies in that topics are changing,

they are related to one another or split into sub-topics as discourse is carried on over time [2].

Efforts have been made to discover related topics or sub-topics either explicitly by using a

combination of topic models and sentiment analysis [12] or implicitly by constructing a net-

work of co-occurrent hashtags referring to related topics [3].

Second, quantification of opinion from qualitative and unstructured textual data posted on

social media is not only a technical challenge but also a theoretical one. Simple metrics based

on counting tweets or mentions related to certain topics/issues or candidates/parties, though

widely applied, have been criticized for their low performance compared to real outcomes or

opinion polls [13–17]. As an enhancement to simple counting methods, lexicon-based senti-

ment analysis has been used in numerous studies to extract positive or negative sentiments

from textual messages on certain topics [2,14,16,18]. However, both types of methods are in
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fact measuring attentions or sentiments rather than opinions (e.g., attitude regarding an argu-

ment or preference for a candidate or a party) [10,16,19,20]. Moreover, the lexicon-based

approach often exhibits unstable performance on the unstructured, informal, sometimes ironic

or sarcastic, language of social media messages due to an ad-hoc dictionary of words with sen-

timent polarity it relies on [21].

Recent research has built more accurate measurements of opinion by taking a supervised

learning approach with either a manually created or automatically generated in-domain

(instead of ad-hoc dictionary) training set that identifies exact opinion information, such as

political support/opposing or agreement/disagreement [3,16,19,22]. Taking a ‘bag-of-words’

approach in natural language processing (NLP) [23], these studies all assume that every word

of a message constitutes a piece of the opinion expressed by the message as a whole, whether

this word is directly related to the topic or considered neutral. These stimulating attempts to

transform qualitative textual data into quantitative measures of opinion are however very ele-

mentary due to the nature of bag-of-words representation (a vector of word appearance) tak-

ing no consideration of word order and hence no semantic information captured at the word

level.

Recent advance in deep neural network learning of word representation (or word embed-

ding) as dense, low-dimensional and real-valued vectors, has suggested superior performance

compared to bag-of-words-based methods. The neural-network-inspired word embedding has

been proved effective in a variety of NLP tasks including sentiment analysis [24–28]. Formally,

word embedding maps words and phrases to mathematic vectors, creating quantitative repre-

sentations in a multidimensional space that preserve syntactic, semantic and contextual rela-

tionships of words [29]. For instance, the well-known word2vec model [25] can achieve tasks

like king–queen = man–woman or infer pairs of present tense-past tense. However, there is

limited research incorporating semantic-preserving word embedding for opinion measure-

ment (some studies using it for topic detection only, such as [30,31]).

Third, there is no formal process for defining a population frame and drawing samples

from social media data as in a survey. The representativeness of social media data is question-

able, although the decentralized nature of this data source and the diversity of its users may

compensate for the potential bias, owing to the large size of social media data [2]. A number of

studies has shown that social media users are not representative of the national populations in

many aspects, such as their geographical distribution, age, gender, race, educational level,

political ideology, and interests in topics [32–37]. For example, geotagged Twitter users in the

U.S. are more likely to be younger, have higher income, live in urbanized areas, and be located

in the east or west coastal areas [34]. It was also found that the majority of Twitter users are

female, but they are not politically active [35]. Besides, measuring public opinion from social

media depends on users who publicly express their opinions. However, these active partici-

pants who voluntarily offer opinions may have systematically different opinions on a topic

from those who are explicitly asked or choose not to offer their opinions (e.g., shy Trump

voter issue); hence the former users’ opinions are over-represented in social media. The under-

lying uncertainties are really hard to control, without even mentioning the problems of bots,

spammers and fake user accounts [38]. Further research has been called for to assess the extent

of uncertainty involved and how plausible social media data can be used as a trustworthy

source of opinion measurement.

The representativeness issue also plays a critical role in aggregating information from indi-

vidual social media messages to a measure of public opinion. For example, a small group of

users act as opinion leaders and dominate the discussion on social media in terms of the vol-

ume of tweets or retweets [39]. User level effect must be controlled for to avoid the over-repre-

sentation of high-level participation. Furthermore, the geotagging of social media posts may
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enable the aggregation to a certain geography when electoral district-based opinion measure-

ment is necessary. However, the resolution of the tagged geographic information varies signifi-

cantly cross messages (e.g., tweets), with only a small proportion of them having exact

locations [40]. Geotags are volunteered by users and hence selecting only geotagged tweets

may introduce a selection bias, which again causes the representativeness problem [41].

Contributions of this work

This research responds to the second challenge and proposes a novel approach for opinion

measurement, which is both theoretically grounded and technically tailored to location-based

social media data. Supervised learning ensures the measurement of opinion rather than atten-

tion or sentiment. Thanks to semantic-preserving word embedding, it also ensures the capture

of opinion information at the finest grain (i.e., word level). Thus, our measure is flexible

enough for aggregation at a range of levels, such as message, user, and various levels of geo-

graphic granularity. Furthermore, this study partially addresses the third challenge by produc-

ing spatial representations of opinion measures at an aggregated level, which permits a

straightforward assessment of representativeness of the social media data. In addition, to

account for the topic selection issue posed by the first challenge, we employ the topic discovery

and opinion identification methods proposed by [3] to build a training set for supervised

learning.

However, this work differentiates itself from [3] in the following key aspects. First, we pro-

pose an innovative approach to measure relative opinion. Second, leveraging location-based

social media data, location data are combined with textual data for opinion measurement in

order to obtain a geographic representation of public opinion that is relevant to political elec-

tions. Third, opinion predictions are conducted at an aggregated geographic level (e.g., state)

to better mitigate errors. As it is common that one may express conflicting opinions in differ-

ent posts at different time and as the user retains full control of the content of a message after

its initial post through changes, edits or even removal, individual opinion is never devoid of

uncertainty. Evidence has shown that opinion classification error at the individual level (e.g.,

tweet or user) remains high and can propagate with aggregation [22,42].

Conceptualization and construction of relative opinion

As an organic source of data for public opinion extraction, social media is characterized by

unstructured text, which contrasts with the designed ‘question’ and ‘response’ structure of tra-

ditional survey data (opinion polls). Opinions may be embedded or even hidden in this

unstructured and free-form writing, which is naturally fuzzy, complex, and of high dimension-

ality [2]. In and of themselves, dimensions in social media text are implicit, hidden and most

of the time undeterminable. Hence, the opinions extracted from such free-form discourse

inherit these features, which must be properly handled when taking the measurement.

While public opinions revealed from survey data can also be multi-dimensional, the dimen-

sions are encoded explicitly in specific questions. In this sense, the opinion measurement

taken by survey data is static, deterministic, and certain and may be called absolute opinion.

The conceptualization of the opinion measurement as a classification problem with predefined

opinion categories, e.g. the support of candidates or parties [3,12] also permeates existing prac-

tices in statistical analysis of mentions and in sentiment analysis for social media data. This

particular conceptualization rooted in the absolute opinion paradigm is ill-suited to capture

the complexity of opinion structures and the continuity between opinion categories that may

exist in the high-dimensionality free-form discourse on social media.
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In response to the deficiencies of the absolute opinion approach for the measurement of

opinions from social media posts, we hereafter propose a relative opinion conceptualization.

This approach is inspired from the relativist view on space in physics and geography, which

posits that space is not merely a neutral container for natural and socioeconomic processes,

but that it is in turn defined and (re-)constructed by the relations among things and events

that take place and operate within it [43,44]. Specifically, relative opinion is to measure how

dissimilar one’s opinion is from that of others. Once the semantic relations for every pair of

individual agents’ (person, community or state) opinions are captured, they can serve to frame

the construction of a relative opinion space. This space entails a multidimensional and contin-

uous representation of opinions that can account for complex opinion structures (e.g. swing

states in U.S. presidential election) and sufficient dimensionality of the opinion space.

To construct the relative opinion measure from Twitter data, we further propose a model-

ing framework (Fig 1). It is our fundamental contention that opinion information can be

incorporated into the learning process of generic word embedding to preserve the opinion ori-

entation of words and sentences towards certain topics, such as support for candidates or par-

ties. This framework comprises three components: 1) data collection and training data for

opinion identification, 2) generation of opinion-oriented word embedding, and 3) aggregation

of word-level opinion embedding to individual and higher level of geographic units (the state

in the case study of this paper). The output is an aggregate relative opinion measure at the state

level and can be useful for visual analytics and predictive analysis in the case study of the 2016

U.S. presidential election.

Methods and data

Data collection and training data for opinion identification

We continuously collected tweets using the Twitter Streaming API (about 1% of Twitter posts)

from September 1st, 2016 to November 8th, 2016, date of the 2016 U.S. presidential elections.

A total of 2.2 million tweets were collected in the English language from the United States with

certain location tags, mentioning the two top presidential candidates from the Republican

Party (Donald J. Trump) and the Democratic Party (Hillary Clinton) by using the same filters

as in [3] with the following keywords: trump OR realdonaldtrump OR donaldtrump and hil-

lary OR clinton OR hillaryclinton. As in [3], we use the name of the Twitter client extracted

from each raw tweet to filter out those automated tweets from bots. 90% of the collected tweets

are retained as originating from official clients. Following the procedure in [3], we utilize hash-

tags from tweets as the main source of opinion information to build a training set of labelled

tweets that indicate clear opinion preferences. This five-step procedure (Fig 1) is detailed in

section A of the S1 Appendix. The output of the procedure is a set of labeled tweets in terms of

six opinion categories: Pro-Clinton, Anti-Trump, Support-Clinton (with Pro-Clinton and

Anti-Trump two most common labels), Pro-Trump, Anti-Clinton, and Support-Trump (with

Pro-Trump and Anti-Clinton two most common labels). This training set contains 238,142

tweets.

Opinion-oriented word embedding

We develop our opinion-oriented word embedding (OOWE) as an extension of the senti-

ment-specific word embedding (SSWE) method [26]. SSWE incorporates sentiment informa-

tion (e.g., positive/negative emoticons) from tweets into generic semantics-preserving word

embedding. OOWE distinguishes itself from SSWE in two respects (Fig 2): 1) it is supervised

learning with opinion preference rather than sentiment information; 2) it can accommodate

any number of opinion categories rather than two (positive-negative) for sentiments.
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Specifically, we modify the upper linear layer to include two separate components, opinion

and semantic, which capture the opinion preference and semantic context of words, respec-

tively. Given C opinion categories, the output layer outputs a C+1 dimensional vector in which

one scalar fs stands for the language model score and f joðj ¼ 1; . . . ;CÞ scalars stand for opinion

scores for all categories. The loss function is specified as a linear combination of two hinge

losses:

Lossðt; trÞ ¼ ð1 � aÞlosssðt; trÞ þ alossoðtÞ

losssðt; trÞ ¼ maxð0; 1þ fsðtrÞ � fsðtÞÞ

lossoðtÞ ¼
1

C � 1

XC

j6¼P
maxð0; 1þ f joðtÞ � f Po ðtÞÞ

ð1Þ

8
>>><

>>>:

Fig 1. Modeling framework for relative opinion.

https://doi.org/10.1371/journal.pone.0233660.g001

Fig 2. Neural network structure for opinion-oriented word embedding algorithm.

https://doi.org/10.1371/journal.pone.0233660.g002
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where t and tr are original and corrupted ngram inputs, respectively, α is a weighting parame-

ter, f Po is the opinion score for the Positive opinion category while f joðj 6¼ PÞ is the opinion

scores for other Negative opinion categories.

We tokenized each tweet with TwitterNLP [45], remove the @user and URLs of each tweet,

and hashtags in the set of labeled hashtags. We train OOWE by taking the derivative of the loss

through back-propagation with respect to the whole set of parameters [29], and use AdaGrad

[46] to update the parameters. We empirically set the window size as 3, the embedding length

as 50, the length of hidden layer as 20, and the learning rate of AdaGrad as 0.1. After training,

the output word embeddings are numeric vectors whose relative positions and distances

toward opinion categories (e.g., Pro-Clinton and Anti-Trump) represent the relative opinions.

Aggregation of relative opinion measure

Since we measure relative opinion at the word level, it is possible to aggregate it to any higher

level, such as the tweet, the user, and the state. A straightforward way to aggregate the embed-

ding representation of words to a document is to take their centroids (averages), which has

been a common approach in creating document-level embedding [47]. Relative opinion mea-

sures at the user and state levels can be obtained similarly. As suggested in a recent review of

ways to measure public opinion with social media data by [2], different levels of participation

of users in social media, as reflected by the varying number of tweets posted by different users,

should be controlled for at the user level. The evaluations of relative opinion measures at the

word and user levels show that these measures can correctly capture the opinion orientation

for specific hashtags and users, which is detailed in section B of the S1 Appendix. Location tags

in social media allow aggregation of opinion measures by administrative and geographic areas,

which may be very useful in electoral studies. The limitation of the representativeness of geo-

tagged tweets is well recognized. We assume here that users would be willing to reveal coarser

(e.g., state or country) rather than finer (e.g., coordinates or city) location information. We

observe that state level location can be inferred for around 90% of the tweets we collected from

one of three pieces of information: Tweet location field, mentioned location in tweet text, and

user profile location field.

Visual analytics of state-level relative opinion measures

This section demonstrates the usefulness of the relative opinion measure in visual analytics by

creating a spatial visualization of the relative opinion space where state-level opinions are rep-

resented as points. Figs 3and 4 are 2-dimensional representations of the original 50-dimension

state-level opinion embedding. They are generated by regular Multi-Dimensional Scaling

(MDS, [48]), a linear dimensionality reduction technique to construct a low-dimensionality

presentation and preserve the global geometry of high-dimensionality data points. The two

axes depicted in these figures are arbitrarily determined in MDS. In other words, what matters

is the relative distance, representing the dissimilarity of opinions, between states as data points

embedded in the constructed relative opinion space. Colors in the figures represent the 2016

U.S. presidential popular vote results by state for the top two candidates: Trump (red) and

Clinton (blue). In Fig 3, states that voted for different candidates are quite clearly divided in

the estimated opinion space, which demonstrates that the relative opinion measure is capable

of capturing a general pattern of discriminating opinions among states. The opinion extremes

follow the upper-right-bottom-left axis, with Support-Clinton heading in the bottom-left

direction and Support-Trump towards the upper-right direction. It is also noted that swing

states (like PA, MI, NH, NV, VA, AZ, and WI) are along, or even cross, the dividing boundary

of opinion, which indicates their nature of having similar levels of support for both candidates.
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This is better shown by the ratio of votes for Trump to votes for Clinton with the gradient of

colors in Fig 4. In this figure, there is a general trend of darker colors towards the two extremes

of opinions, while the lighter colors are found close to the dividing boundary of opinions.

In addition, variation of opinions across users can be visualized for state-level opinion

aggregates. The opinion embedding constructed earlier for users are taken to compute stan-

dard deviations by state as a measure of opinion variation at the user level. In Fig 5, the size of

circles represents the level of opinion variation. Fig 6 visualizes the representativeness of the

Twitter data by the ratio of the number of twitter users captured in the data to the size of the

population of each state. Thus, the tiny circle for DC in Fig 5 indicates that users in DC share a

common opinion, while the large circle of DC in Fig 6 means that DC’s population is relatively

Fig 3. Two-dimensional MDS representation of the relative opinion space color-coded by the 2016 US presidential popular vote results. Red: vote for Trump;

blue: vote for Clinton.

https://doi.org/10.1371/journal.pone.0233660.g003
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well represented in the data. A small variation of opinion is also found for ME in Fig 5. How-

ever, as ME’s population is relatively underrepresented in the data (a small circle in Fig 6), the

small variation of opinion for ME shown in Fig 5 may in fact be biased. This is partially con-

firmed by the popular vote outcome where the votes casted for both candidates in ME are

quite competitive, having only 2% difference (47.8% for Clinton and 45.1% for Trump).

Results show a large variation of opinions for Texas users (Fig 5) with a reasonable popula-

tion representation (Fig 6). Texas cities, such as Houston, have been experiencing growth in

relatively liberal urban professionals as well as in an influx of Hispanic and other immigrants,

which makes urban areas swing strongly democratic [49]. In fact, in 2016, Clinton received

three percent more votes than Obama did in 2012 in this state. This could explain the large var-

iation of opinions in Texas instead, which departs from the preconceived intuition that Texas

has always been a “deep-red” state. In other results, we see that AL, MS, and LA on the far

Fig 4. Two-dimensional MDS representation of the relative opinion space color-coded by the 2016 US presidential popular vote ratios. Darker blue means lower

ratio of votes for Trump to votes for Clinton; Darker red means higher ratio of votes for Trump to votes for Clinton. Light blue and red depict swing states.

https://doi.org/10.1371/journal.pone.0233660.g004
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extreme of the red side also show large variation (Fig 5), which indicates that opinions can dif-

fer broadly across individuals even in “deep-red” states, as republicans can come in widely dif-

ferent flavors. However, the former case of Texas that sits close to the dividing boundary is

much more critical than the later ones for the election outcome. It is noted that Kansas is

placed on the dividing boundary and carries a large opinion variation with a relatively bad rep-

resentativeness. At first glance, this could be interpreted as a misplacement due to the data

issue, as Kansas has always supported Republican candidates in the past four presidential elec-

tions (a deep-red state). A look into county-level election results (Table 1) point to a very dif-

ferent story, however. We see that the most populous county, Johnson County, had quite close

Fig 5. Two-dimensional MDS representation of the relative opinion space with opinion variation for each state and color-coded by the 2016 US presidential

election results. Red means vote for Trump; Blue means vote for Clinton. A larger circle means larger standard deviation of users’ opinion positions for a state.

https://doi.org/10.1371/journal.pone.0233660.g005
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Fig 6. Two-dimensional MDS representation of the relative opinion space with the ratio of number of Twitter users captured in the data to the size of

population for each state and color-coded by the 2016 US presidential election results. Red means vote for Trump; Blue means vote for Clinton. A larger circle

means larger ratio.

https://doi.org/10.1371/journal.pone.0233660.g006

Table 1. Election results for the top 5 most populous counties in the state of Kansas.

County Clinton % Trump % Others % Total

Johnson 44.76 47.40 7.84 290,090

Sedgwick 36.88 55.28 7.84 188,783

Shawnee 44.99 47.65 7.35 75,406

Douglas 62.28 29.32 8.39 50,087

Wyandotte 61.80 32.40 5.80 48,781

Total 45.13 47.20 7.67 653,147

https://doi.org/10.1371/journal.pone.0233660.t001
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supports for both candidates. This is also true for the total support of the five most populous

counties. This state of affairs could be an explanation for the large variation of opinions state-

wide, given the commonly accepted assumption that people in more urbanized areas have a

larger chance to tweet [41].

States near the opinion boundary are interesting to consider in more detail because opinion

may be harder to apprehend there than in other states. Let us now consider the case of Con-

necticut and Delaware, both of which have been reliably democratic states in the past four

presidential elections. Records show that both states have shifted more than 5 percentage

points toward the political center since 2008, reflecting President Trump’s strength with

white, working-class voters [50]. This shift is well captured by Twitter data as well as we find

these states positioned along the dividing line, while showing a modest level of opinion varia-

tion and representativeness. In Figs 3 and 4, an obvious misplacement is WI which, given

casted votes, is placed on the wrong side of the opinion boundary. Figs 5 and 6 show that WI

is in fact highly underrepresented in the data while opinion variation is moderately large,

which fully accounts for the discrepancy between the model and actual votes. Research on

Wisconsin’s voting during the 2016 elections has shown that Wisconsin was the state with

the highest percentage of voters who finalized their voting decision in the final week and

voted for Trump (59%, [51]). We argue that this fact, together with the so-called “Shy Trump

effect” (Trump supporter were unwilling to reveal their true preference because their support

was socially undesirable), has led to the underrepresentation of opinions among Trump sup-

porters in social media. In sum, the best practice is to examine the representativeness of

opinion measures and the opinion variation together (combining Figs 5 and 6) in order to

evaluate the usefulness of the constructed measure and to unveil the underlying opinion

patterns.

Prediction with state-level relative opinion measures

This section showcases the power of the relative opinion measure in supporting opinion pre-

dictions at the state level. To achieve this, the continuous representation of the relative opinion

needs to be discretized into opinion categories, which can be validated against the real election

outcomes and compared to opinion polls at the state level. To transform the continuous opin-

ion to discrete ones, a label propagation method is devised here by taking advantage of the

graph structure embedded in the relative opinion measure. Specifically, relative opinion

embedding can be used to construct a graph, where each data point (state) is a vertex labelled

to denote one of the discrete opinion categories and where an edge exists between a pair of

data points based on their proximity in the relative opinion space. Hence, predicting the

unknown opinion labels in the graph from a few data points with known labels (prior informa-

tion) can be formulated as a semi-supervised label propagation problem [52,53]. In the case of

the US presidential election, a few “deep-red” and “deep-blue” states whose voters predomi-

nantly choose either the Republican (red) or the Democratic (blue) candidate are usually easy

to identify through historical voting, which provides the prior information for known labels

and makes the above prediction problem feasible.

Linear neighborhood propagation

We adopt here a well-established label propagation method named Linear Neighborhood

Propagation (LNP; [52,53]) to discretize the relative opinions. As a semi-supervised learning

approach to propagating labels on a graph, LNP considers the global structure of the graph by

capturing the local structure or neighborhood for each vertex (data point) comprising other

vertices in close proximity to it [54]. Inspired by some of the nonlinear dimensionality
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reduction methods, constructing a low dimensional representation of high-dimensionality

data with the local structure of the data preserved, such as Locally Linear Embedding (LLE,

[55]), LNP assumes the data points are sampled from an underlying manifold and each data

point and its label can be linearly reconstructed from its neighbors. That is, there exists an

adjacency weight matrix W that minimizes the reconstruction error ε for n data points:

min εðWÞ ¼
Pn

i¼1
jxi �

Pk
j¼1

wijxij
2

s:t:
Pk

j¼1
wij ¼ 1

ð2Þ

8
<

:

where k is the number of neighbors for each data point.

Because of the local linearity assumption, the manifold can be well approximated by a suffi-

ciently small neighborhood (a linear subspace or the tangent space) surrounding any data

point, which would ideally shrink ε to zero. The W to be determined essentially characterizes

the linear neighborhood for every data point by specifying the contribution of each neighbor.

Because W captures the intrinsic local structures of the manifold, the weights are invariant to

linear transformations of the high-dimensionality manifold into a low-dimensionality repre-

sentation preserving the intrinsic structures of the original manifold. This is the fundamental

rationale behind LLE. Along a similar rationale, the label li of each data point can be recon-

structed by a linear combination of its neighbors’ labels:

li ¼
Pk

j¼1
wijlj ð3Þ

The algorithm applied in this study (Algorithm 1) is an extended version of the original

algorithm proposed in [52]. Given a set of n data points xi (aggregate opinion embedding),

each has an initial label li, a vector of length C, where each element represents one of the C cat-

egories. For a known label li, one element has the value of 1 indicating the represented cate-

gory, and all other elements have the value of 0. For an unknown label li, all elements are

initialized with the value of 0. The algorithm includes five general steps as follows. 1) Deter-

mine the local linear neighborhood for each data point xi by computing its k nearest neighbors

based on a chosen distance metric (e.g., Euclidean or Geodesic distance); 2) Construct a

directed graph Gknn by creating an edge from xi to each of its neighbors; 3) Minimize Eq 2 to

calculate wij for each edge in Gknn characterizing local neighborhoods; 4) Apply wij to Eq 3 to

compute label li for each xi in Gknn and iterate this process until every label li in Gknn con-

verges; 5) Determine the category of label li by setting the largest element in li as 1 and the

remaining elements as 0.

Research has shown that the Geodesic distance is superior to the default setting of Euclid-

ean distance in LLE, and can eliminate the “short circuit” problem and lead to a more faithful

representation of the global structure of the underlying manifold [56]. The Geodesic distance

is approximated as the length of shortest path between a pair of data points in a weighted

graph Ggeo, which can be computed as in [57]. Following [56], Ggeo is constructed by connect-

ing each data point with a set of neighboring data points based on a typical dissimilarity mea-

sure, e.g., the Euclidean distance, as the edge weight. To determine the neighboring data

points, a minimum value of the neighborhood size is chosen such that all the pairwise geodesic

distances are finite [56]. In Step (1.5), an embedding X0 2 Rd is reconstructed from the pair-

wise geodesic distances via MDS with the same dimensionality as of X. Thus, X0 can be viewed

as an unfolding of the original manifold represented by X to enforce linearity in the recon-

structed geometry where the topology of the original manifold is preserved by Geodesic dis-

tance. This step ensures the fulfilment of the assumptions by LNP.
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__________________________________________________________________________
Algorithm 1: Linear Neighborhood Propagation
__________________________________________________________________________
Input:
Data points X ¼ fx1; x2; . . . ; xm; xmþ1; . . . ; xng 2 R

d, fxig
m
i¼1 are labeled, fxig

n
i¼mþ1 are

unlabeled.
The initial labels = flig

n
i¼1.

The number of nearest neighbors k.
Output:
The labels for all data points.
Procedure:
(1) Compute k nearest neighbors for each data point in X based on a
defined distance metric (Euclidean or Geodesic distances); if Euclid-
ean distance is used, skip (1.5), otherwise perform (1.5).
(1.5) Run MDS algorithm on pairwise Geodesic distances to reconstruct
X0 2 Rd as an unfolding of X and set X = X0.
(2) Construct the k-nearest-neighbor graph Gknn.
(3) Compute the adjacency weight matrix W that best reconstructs each
data point in X from its k nearest neighbors by minimizing Eq 2.
(4) For i = m to n, Do

set l0i ¼
Pk

j¼1 wijlj based on Eq 3

update li ¼ l0i until li converges
(5) For i = m to n, Do

set li = f(li), where f(�) takes the vector li and set its larg-
est element as 1 and

any other element as 0.
__________________________________________________________________________

Comparison of predictions with euclidean and geodesic distances

Given the embedding of data points and the initial labels, the only parameter in Algorithm 1 is

the number of nearest neighbors k. The influence of k on the quality of embedding generated by

LLE and its variants has been studied [55,58]. General criteria must be considered to set the

range of k. First, the dimensionality of the output embedding should be strictly less than k; sec-

ond, a large k will violate the assumption of local linearity in the neighborhood for curved data

sets and lead to loss of nonlinearity for the mapping. In the following experiments aimed at

comparing Algorithm 1 implemented with Euclidean and Geodesic distances, respectively, sen-

sitivity analysis is conducted on k in the range of [2, d
2
], where d is the dimensionality of the orig-

inal embedding. For prediction experiments, sensitivity analysis is also conducted by varying

numbers of initial labels that are balanced (2, 4, 6, and 8 labelled states for each of the two opin-

ion classes, i.e., 4, 8, 12, and 16 labels in total) and randomly selected from the set of true labels

(the 2016 U.S. presidential popular vote results by state).

According to Eq 2, given the embedding X based on either Euclidean or Geodesic distances

and given a k value, an optimal W and the low-dimensionality embedding based on W can be

deterministically computed. The quality of W(X,k), viewed as a function of X and k, can be

evaluated by measures comparing original data points and the embedding mapped into the

low-dimensionality space. According to Eq 3, a high-quality W would lead to a good predic-

tion. Two such measures [56], namely Neighborhood Preservation (NP, Eq 4) and Stress (ST,

Eq 5), were proposed to assess the quality of W for LLE and they are used here to evaluate the

influence of Euclidean and Geodesic distances on the quality of results in relation to the pre-

diction results by Algorithm 1:

NP ¼
1

n
Pn

i¼1
PkðxiÞ ð4Þ
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where Pk(xi) is the percentage of the k-nearest neighbors of xi in the original space that are pre-

served in the low-dimensionality embedding space.

ST ¼
P

ij½dðxi; xjÞ � tðxi; xjÞ�
2

P
ijtðxi; xjÞ

2
ð5Þ

where δ(xi,xj) and τ(xi,xj) are the pairwise distance in the original and in the embedding space,

respectively. As the MDS method in step 1.5 of Algorithm 1 involves randomness, 50 runs are

conducted here to examine the stability of the two measures for Geodesic distance.

Figs 7 and 8 present a comparison of NP and ST across a range of k values in [2, 25] for

using Euclidean and Geodesic distances in LLE, respectively. Fig 7 shows that the Geodesic dis-

tance leads to better neighborhood preservation with the derived W than Euclidean distance

does for all values of k, except 25. Similarly, the Geodesic distance achieves lower ST for most k
values, except for a few cases (10, 11, 12, 16, and 22). Both measures indicate that the Geodesic

distance generates superior quality of W than the Euclidean one does in general and that it

should lead to better prediction results for Algorithm 1.

Figs 9–12 show the median prediction error of Algorithm 1 with the Euclidean distance,

versus the Geodesic distance, for varying numbers of initial labels. Due to the random assign-

ment of the initial labels, 50 runs for each setting are conducted to examine the stability of per-

formance via a 95% confidence interval (the region surrounding the median). Across Figs 9–

12, similar patterns are shown for each distance type. For the Euclidean distance (EUC), the

prediction error first decreases as k increases, then reaches its lowest value around k = 8 before

it resumes increasing for larger ks. After k = 8, the general trend of the prediction error is

increasing, though it decreases slightly after k = 20. On the other hand, the prediction error for

the Geodesic distance (GEO) first decreases until it arrives at a local minimum around k = 5;

after that it bounces back to a local peak around k = 8. For k = 9 and onward, the prediction

error becomes smaller, which presents a general decreasing trend for the entire curve. It is

noted that although predictions with EUC seem always better than those with GEO locally

around k = 8, the latter shows a superior performance globally over a longer range of k = [13,

25]. The superiority achieved while using the Geodesic distance should be attributed to Step

(1.5) in Algorithm 1 where the linearity is enforced by MDS in the reconstructed geometry of

embedding.

The comparison between Figs 9–12, the results with different numbers of initial labels, indi-

cates that prediction errors for both EUC and GEO generally shift lower and the confidence

interval width becomes narrower as the number of initial labels increases. This is especially

pronounced for GEO in the range of k2[13, 25]. For instance, the performance for models

with 8 initial labels dramatically increases compared to that for models with 4 initial labels, as

the median error is within [4, 6] for the former while it is between [8, 13] for the latter. It con-

firms that predictions with more prior information (larger number of initial labels) will lead to

consistently better and more stable performance. As we have demonstrated that predictions

with GEO consistently outperform those with EUC and achieve global optima over the range

of k2[13, 25] under different parameter settings, it remains to determine whether there will

always exist an optimal k or a range where some optimal ks reside and whether it is possible to

identify them before running predictions.

Predictions with the optimal neighborhood sizes

As one of the key parameters in Algorithm 1, the neighborhood size k dramatically affects the

quality of prediction as demonstrated in Figs 9–12. To obtain the optimal results, the selection

of optimal k becomes a key issue. However, the two measures used in the previous section only

PLOS ONE Measuring relative opinion from location-based social media

PLOS ONE | https://doi.org/10.1371/journal.pone.0233660 May 22, 2020 16 / 27

https://doi.org/10.1371/journal.pone.0233660


enable the comparison between two sets of embedding X based on either Euclidean or Geode-

sic distances, but they are not suitable for comparison across the values of k. As W(X,k) is a

function of k, an automatic technique, called Preservation Neighborhood Error (PNE), was

developed for choosing the optimal k by evaluating the quality of W across a range of k [58].

This technique minimizes a cost function that considers both the local and global geometry

preservation:

kPNE ¼ mink PNE

PNEðkÞ ¼
1

2n

Xn

i¼1

X

j2Kh

jdðxi; xjÞ � tðxi; xjÞj
2

k
þ
X

j2Kl

jdðxi; xjÞ � tðxi; xjÞj
2

k

" #
ð6Þ

8
>><

>>:

Fig 7. Comparison of NP when using the euclidean distance (EUC) and the average NP when using the geodesic

distance (GEO) over a range of k. The grey bar indicates the standard deviation for 50 runs of NP with GEO.

https://doi.org/10.1371/journal.pone.0233660.g007

Fig 8. Comparison of ST when using the euclidean distance (EUC) and the average ST when using the geodesic

distance (GEO). The grey bar indicates the standard deviation for 50 runs of ST with GEO.

https://doi.org/10.1371/journal.pone.0233660.g008
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where Kh is the set of k nearest neighbors found in the original space; Kl is the set of k nearest

neighbors found in the low-dimensionality embedding space. δ(xi,xj) and τ(xi,xj) are the pair-

wise distances in the original and in the embedding space, respectively. In Eq 6, the first item is

the error of misses indicating the preservation of local neighborhood, while the second item

refers to false positives that reflect the loss of global geometry of the manifold [58].

From the median PNE measure shown in Fig 13 over a range of k with the Geodesic dis-

tance, we find that PNE values are lower above k = 10. Thus, there may exist some optimal ks

Fig 9. Comparison of the median prediction errors with the euclidean distance (EUC) and those with the geodesic

distance (GEO) using 4 initial labels. The region surrounding each median is a 95% confidence interval calculated

from 50 runs of prediction.

https://doi.org/10.1371/journal.pone.0233660.g009

Fig 10. Comparison of the median prediction errors with the euclidean distance (EUC) and those with the

geodesic distance (GEO) using 8 initial labels. The region surrounding each median is a 95% confidence interval

calculated from 50 runs of prediction.

https://doi.org/10.1371/journal.pone.0233660.g010
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for prediction, especially around k = 18 and k = 24. This lies within the [13, 25] range, where

the predictions have achieved superior performance in Figs 9–12, although k = 18, where the

minimum of PNE is, does not necessarily correspond to the optimal k for the best prediction.

Fig 13 also shows a generally high stability (small confidence intervals) of the PNE measure

over the range [13, 25]. It has been demonstrated that PNE is able to indicate a rough range

where the optimal neighborhood size k may reside, rather than a specific optimal k, which can

significantly reduce the number of prediction runs to select a good model.

Fig 11. Comparison of the median prediction errors with the euclidean distance (EUC) and those with the

geodesic distance (GEO) using 12 initial labels. The region surrounding each median is a 95% confidence interval

calculated from 50 runs of prediction.

https://doi.org/10.1371/journal.pone.0233660.g011

Fig 12. Comparison of the median prediction errors with the euclidean distance (EUC) and those with the

geodesic distance (GEO) using 16 initial labels. The region surrounding each median is a 95% confidence interval

calculated from 50 runs of prediction.

https://doi.org/10.1371/journal.pone.0233660.g012

PLOS ONE Measuring relative opinion from location-based social media

PLOS ONE | https://doi.org/10.1371/journal.pone.0233660 May 22, 2020 19 / 27

https://doi.org/10.1371/journal.pone.0233660.g011
https://doi.org/10.1371/journal.pone.0233660.g012
https://doi.org/10.1371/journal.pone.0233660


Comparison of predictions with polling

This section examines the performance of the opinion predictions with the relative opinion

measure in comparison to pre-election polls, which remain the mainstream method to obtain

public opinion today. The polling data are from the pre-election wave of the 2016 Cooperative

Congressional Election Survey conducted countrywide from October 4th to November 6th

[59, 60]. The polling results for Clinton (blue) and Trump (red) are plotted with the relative

opinion measure (Fig 14). Compared to Fig 3 showing the actual election votes, the results

show 7 misses, including the states of IA, NC, FL, OH, MI, PA, and WI. This performance is

better than that for GEO models with 4 initial labels (Fig 9). On the other hand, it is worse

than that for GEO models with 8 and more initial labels (Figs 10–12) according to the reported

median errors for the suggested range of optimal neighborhood size k2[13, 25] discussed in

the previous section.

Specially, among these misses of polling data there is a cluster of states (IA, NC, FL, and

OH) that stand out by their relative opinion measure located a fair distance from the opinion

dividing boundary, along which the other misses (MI, PA, and WI) are positioned. It is under-

standable that the latter cases are difficult to predict, while the former cluster of errors can be

corrected by using the relative opinion measure. To demonstrate this, we show here a specific

GEO model with 8 predetermined initial labels and k = 18 chosen from the range of [13, 25].

Eight initial labels are used here because: 1) the prior information to determine 4 deep-red and

4 deep-blue states is trivial given the common knowledge of historical voting; 2) the GEO

model with 8 initial labels has shown a good balance of performance and amount of prior

information needed. Table 2 details the selection of the 8 initial labels given a general percep-

tion of deep-red and deep-blue states (other combinations of deep-red and deep-blue states

have been tested, which give similar results). Verification of this model with varying k is per-

formed and the results are shown in Fig 15. It shows a superior and stable model performance

over the range of k2[17, 24] with prediction errors equal to 2. Fig 16 plots the prediction

results for all states by this model when k = 18. The two errors are for the states of WI and KS,

which are along the opinion dividing boundary and admittedly difficult to predict. By contrast,

the cluster of errors for IA, NC, FL, and OH obtained based on polling do not surface here

because, in the relative opinion space, these states are relatively close to the Support-Trump

Fig 13. The median PNE for using the geodesic distance over a range of neighborhood size k. The region

surrounding the median is a 95% confidence interval calculated from 50 runs of PNE.

https://doi.org/10.1371/journal.pone.0233660.g013
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opinion extreme where most deep-red states are located. It is thanks to the nature of the rela-

tive opinion measure triangulating every state’s opinion position based on its relationship with

every other state’s position that reduction of uncertainty is achieved and that a measurement

of opinions more robust than polling is produced.

Fig 14. Two-dimensional MDS representation of the relative opinion space with 2016 cooperative congressional election survey polling data (conducted from

October 4th to November 6th, 2016). Red: vote for Trump; blue vote for Clinton.

https://doi.org/10.1371/journal.pone.0233660.g014

Table 2. Settings for initial labels.

Class 8 Labels 12 Labels

Clinton (blue) CA, DC, MA, NY CA, DC, MA, NY, DE, CT

Trump (red) NE, OK, WV, WY NE, OK, WV, WY, KS, WI

https://doi.org/10.1371/journal.pone.0233660.t002
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Interestingly, when additional labels are assigned to the states of DE, CT, KS, and WI as

part of the LNP learning process, the GEO model with 12 initial labels (specified in Table 2)

produces only one or no error over the range k2[16, 24] (Fig 15), which emphasizes the criti-

cality of the prior knowledge about the opinions of states located along and close to the opin-

ion dividing boundary. This prior information could be obtained by accurate opinion polls.

Combining the critical prior information with the relative opinion measure would lead to a

high quality of predictions that is beyond reach by either of the two alone. In other words,

opinion poll can complement the relative opinion measure by providing prior knowledge for

initial labels.

Conclusions and future work

This study proposed to measure relative opinion from LBSM data in response to the challenge

of leveraging the rich and unstructured discourse on social media as an alternative source to

opinion polls for public opinion measurement (the first question in the introduction). The

advantages of the relative opinion measure lie in its theoretical grounding and methodological

suitability to LBSM data. The relative opinion conceptualization theoretically compensates the

deficiency of the absolute opinion measure in representing complex opinion structures. On

the other hand, the pairwise relationship of opinions characterized by this measure naturally

suits the embedding representation of opinion positions that can be learned from high-

dimensionality textual messages with supervision. To make this quantification technically fea-

sible, a modeling framework was proposed, including building a training dataset by adopting a

state-of-the-art approach and developing a supervised learning method, the opinion-oriented

word embedding.

To demonstrate the validity of the relative opinion measure, spatial visualizations of relative

opinion space were constructed to aid visual analytics. As an exploratory analysis approach, it

facilitates the examination of uncertainty and representativeness of the measure, the discovery

of opinion patterns across geographies, and the correspondence between relative opinion posi-

tions with other variables such as opinion polls and real election outcomes, which may

Fig 15. Prediction errors for the two models with 8 and 12 initial labels, respectively, using settings in Table 2 and

the geodesic distance.

https://doi.org/10.1371/journal.pone.0233660.g015
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stimulate the formation of new hypotheses on electoral behavior. Furthermore, the relative

opinion measure supports practical opinion predictions at aggregated geographic levels, trans-

forming a continuous representation into a discrete one that is comparable to opinion polls

and strongly validated by election outcomes. This is enabled by a linear neighborhood propa-

gation method that incorporates the intrinsic geometry of the relative opinion space, optimal

neighborhood sizes, and the prior knowledge of opinion preferences for a small number of

entities.

In the case study of the 2016 U.S. presidential election, it is demonstrated that the relative

opinion measure constructed on Twitter data is more robust than polling data, thanks to its

theoretical grounding and the various analytical techniques that exploit the intrinsic properties

Fig 16. Two-dimensional MDS representation of the relative opinion space with prediction results of the model with 8 initial labels and neighborhood size

k = 18.

https://doi.org/10.1371/journal.pone.0233660.g016
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of LBSM data. However, given their differences in concept, data collection, and methodology,

the relative opinion measure cannot and should not replace polling. Instead, the two type of

measures and their associated data are complementary in opinion measurement, which has

been demonstrated by our prediction approach to be feasible and promising. This is an answer

to the second research question presented in the introduction.

Admittedly, as the present work is an initial study of the relative opinion measure, further

investigation is needed. There are several directions for future studies. First, the results

reported in this study are based on the 1% sample of tweets for the study period. If this sam-

pling rate can increase to better represent the population, we should be able to examine the

sensitivity of our measure to the variation of sample size. Second, measuring relative opinion

at a finer geographic level, such as county or city, could be studied with tweets geolocated by

enhanced spatial resolution; clustering opinions can be done to evaluate how the boundaries

of opinion groups are different from geographic boundaries [61]. Third, with tweets extracted

longitudinally, the temporal dynamics of this measure could be investigated to support opin-

ion predictions over time. Last, social network data from Twitter could be utilized and incor-

porated into the relative opinion measure for better opinion measurement.
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