11 research outputs found

    A new measure for community structures through indirect social connections

    Full text link
    Based on an expert systems approach, the issue of community detection can be conceptualized as a clustering model for networks. Building upon this further, community structure can be measured through a clustering coefficient, which is generated from the number of existing triangles around the nodes over the number of triangles that can be hypothetically constructed. This paper provides a new definition of the clustering coefficient for weighted networks under a generalized definition of triangles. Specifically, a novel concept of triangles is introduced, based on the assumption that, should the aggregate weight of two arcs be strong enough, a link between the uncommon nodes can be induced. Beyond the intuitive meaning of such generalized triangles in the social context, we also explore the usefulness of them for gaining insights into the topological structure of the underlying network. Empirical experiments on the standard networks of 500 commercial US airports and on the nervous system of the Caenorhabditis elegans support the theoretical framework and allow a comparison between our proposal and the standard definition of clustering coefficient

    Budget-constrained cut problems

    Full text link
    The minimum and maximum cuts of an undirected edge-weighted graph are classic problems in graph theory. While the Min-Cut Problem can be solved in P, the Max-Cut Problem is NP-Complete. Exact and heuristic methods have been developed for solving them. For both problems, we introduce a natural extension in which cutting an edge induces a cost. Our goal is to find a cut that minimizes the sum of the cut weights but, at the same time, restricts its total cut cost to a given budget. We prove that both restricted problems are NPComplete and we also study some of its properties. Finally, we develop exact algorithms to solve both as well as a non-exact algorithm for the min-cut case based on a Lagreangean relaxation that generally provides optimal solutions. Their performance is reported by an extensive computational experience.Comment: 21 pages, 6 figures, 11 table

    A mathematical programming approach to overlapping community detection

    Get PDF
    We propose a new optimization model to detect overlapping communities in networks. The model elaborates suggestions contained in Zhang et al. (2007), in which overlapping communities were identified through the use of a fuzzy membership function, calculated as the outcome of a mathematical programming problem. In our approach, we retain the idea of using both mathematical programming and fuzzy membership to detect overlapping communities, but we replace the fuzzy objective function proposed there with another one, based on the Newman and Girvan's definition of modularity. Next, we formulate a new mixed-integer linear programming model to calculate optimal overlapping communities. After some computational tests, we provide some evidence that our new proposal can fix some biases of the previous model, that is, its tendency of calculating communities composed of almost all nodes. Conversely, our new model can reveal other structural properties, such as nodes or communities acting as bridges between communities. Finally, as mathematical programming can be used only for moderate size networks due to its computation time, we proposed two heuristic algorithms to solve the largest instances, that compare favourably to other methodologies. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Reformulated acyclic partitioning for rail-rail containers transshipment

    Get PDF
    Many rail terminals have loading areas that are properly equipped to move containers between trains. With the growing throughput of these terminals all the trains involved in a sequence of such movements may not ¿t in the loading area simultaneously, and storage areas are needed to place containers waiting for their destination train, although this storage increases the cost of the transshipment. This increases the complexity of the planning decisions concerning these activities, since now trains need to be packed in groups that ¿t in the loading area, in such a way that the number of containers moved to the storage area is minimized. Additionally, each train is only allowed to enter the loading area once. Similarly to previous authors, we model this situation as an acyclic graph partitioning problem for which we present a new formulation, and several valid inequalities based on its theoretical properties. Our computational experiments show that the new formulation outperforms the previously existing ones, providing results that improve even on the best exact algorithm designed so far for this problem.Peer ReviewedPostprint (author's final draft

    A branch-and-price approach for the continuous multifacility monotone ordered median problem

    Get PDF
    Acknowledgements The authors of this research acknowledge financial support by the Spanish Ministerio de Ciencia y Tecnología, Agencia Estatal de Investigación and Fondos Europeos de Desarrollo Regional (FEDER) via project PID2020-114594GB-C21. The authors also acknowledge partial support from project B-FQM-322-UGR20. The first, third and fourth authors also acknowledge partial support from projects FEDER-US-1256951, Junta de Andaluca P18-FR-1422, CEI-3-FQM331, FQM-331, and NetmeetData: Ayudas Fundacin BBVA a equipos de investigacin científica 2019. The first and second authors were par- tially supported by research group SEJ-584 (Junta de Andalucía). The first author was also partially supported by the IMAG-Maria de Maeztu grant CEX2020-001105-M/AEI/10.13039/50110 0 011033. The second author was supported by Spanish Ministry of Education and Science grant number PEJ2018-002962-A and the Doctoral Program in Mathematics at the Universidad of Granada. The third author also acknowledges the grant Contratación de Personal Investigador Doctor (Convocatoria 2019) 43 Contratos Capital Humano Línea 2 Paidi 2020, supported by the European Social Fund and Junta de Andalucía.In this paper, we address the Continuous Multifacility Monotone Ordered Median Problem. The goal of this problem is to locate facilities in minimizing a monotone ordered weighted median function of the distances between given demand points and its closest facility. We propose a new branch-and-price procedure for this problem, and three families of matheuristics based on: solving heuristically the pricer problem, aggregating the demand points, and discretizing the decision space. We give detailed discussions of the validity of the exact formulations and also specify the implementation details of all the solution procedures. Besides, we assess their performances in an extensive computational experience that shows the superiority of the branch-and-price approach over the compact formulation in medium-sized instances. To handle larger instances it is advisable to resort to the matheuristics that also report rather good results.Spanish Ministerio de Ciencia y Tecnología, Agencia Estatal de Investigación and Fondos Europeos de Desarrollo Regional (FEDER) via project PID2020-114594GB-C21Partial support from project B-FQM-322-UGR20Partial support from projects FEDER-US-1256951, Junta de Andaluca P18-FR-1422, CEI-3-FQM331, FQM-331, and NetmeetData: Ayudas Fundación BBVA a equipos de investigacin científica 2019Research group SEJ-584 (Junta de Andalucía)Partially supported by the IMAG-Maria de Maeztu grant CEX2020-001105-M/AEI/10.13039/50110 0 011033Spanish Ministry of Education and Science grant number PEJ2018-002962-AEuropean Social Fund and Junta de Andalucí

    Compact Formulations for Multi-depot Routing Problems: Theoretical and Computational Comparisons

    Get PDF
    Multi-depot routing problems mainly arise in distribution logistics where a fleet of vehicles are used to serve clients from a number of (potential) depots. The problem concerns deciding on the routes of each vehicle and the depots from which the vehicles depart, so as to minimize the total cost of travel. This paper reviews a number of existing compact formulations, and proposes new ones, for two types of multi-depot routing problems, one that includes the depot selection decisions, and the other where depots are pre-selected. The formulations are compared theoretically in terms of the strength of their linear programming relaxation, and computationally in terms of the running time needed to solve the instances to optimality
    corecore