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a b s t r a c t 

Many rail terminals have loading areas that are properly equipped to move containers between trains.

With the growing throughput of these terminals all the trains involved in a sequence of such movements

may not fit in the loading area simultaneously, and storage areas are needed to place containers waiting

for their destination train, although this storage increases the cost of the transshipment. This increases

the complexity of the planning decisions concerning these activities, since now trains need to be packed

in groups that fit in the loading area, in such a way that the number of containers moved to the storage

area is minimized. Additionally, each train is only allowed to enter the loading area once.

Similarly to previous authors, we model this situation as an acyclic graph partitioning problem for

which we present a new formulation, and several valid inequalities based on its theoretical properties.

Our computational experiments show that the new formulation outperforms the previously existing ones,

providing results that improve even on the best exact algorithm designed so far for this problem.

© 2019 Elsevier B.V. All rights reserved.
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. Introduction

Inland freight transportation is an increasing activity with a

igh economical and environmental impact. Among the alterna-

ive transport modes, road transport has traditionally had a very

arge share (for instance, according to Eurostat Statistics Explained,

017 in 2014 it accounted for 74.9% of the total inland freight

ransport -t–Km- within the EU). In order to increase its competi-

iveness and to avoid the drawbacks of this activity such as conges-

ion and pollution, other transportation modes are encouraged by

he authorities (see, e.g., European Commission, 2011 ). In this re-

ard, rail transport (accounting already in 2014 for almost 20% of

he total inland freight transport in the European Union) is a rel-

vant alternative, and presents now an increasing trend. This de-

irable increase in the rail freight transportation requires an adap-

ation of the infrastructures and involves increasingly complex de-

isions from the managerial point of view. In particular, the new

hallenges within the freight handling processes in railway yards

ave originated a stream of literature on suitable optimization ap-

roaches and decision support systems. A recent survey on these

orks can be found in Boysen, Fliedner, Jaehn, and Pesch (2013) . 

Among the surveyed problems, Boysen, Jaehn, and Pesch

2011) consider the rail-rail transshipment system described next.
∗ Corresponding author.
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n a given railway yard, a series of containers must be transshipped

mong a number of trains. There is a loading area composed by a

eries of parallel train tracks equipped with gantry cranes, and a

torage area. Each train has a given length and the tracks have a

imited capacity, so that not all trains can be within the loading

rea at the same time, and a schedule must be designed where one

roup of trains enters the loading area after the other. Each time,

ontainers are moved between trains within the loading area. If a

ontainer has to be moved from one of those trains to another one

hich is not there, it is placed in the storage area to wait until the

rain that must carry it enters the loading area. Feasible schedules

re those associated with groups of trains that fit in the loading

rea, where no train needs to enter this area more than once. The

oal is to find a feasible schedule that minimizes the number of

ontainers that need to be moved to and from the storage area

see Fig. 1 ). 

Already in Boysen et al. (2011) and later in Nossack and Pesch

2014a) , this situation was addressed through a graph partitioning

roblem (GPP). In these problems, the nodes of a given graph must

e assigned to clusters in order to optimize an objective func-

ion. Different GPP variants arise when alternative conditions are

mposed on the number or the size of these clusters, or on the

tructure of the graph they induce. Some of them are surveyed

n Alpert and Kahng (1995) and in the recent book in Parrochia

nd Neuville (2013) . GPPs are rather difficult to solve through in-

eger programming mainly due to the symmetries inherent to the
dríguez-Chía, Reformulated acyclic partitioning for rail-rail con- 
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Fig. 1. Rail-Rail transshipment yard representation. 
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solutions. Relevant heuristics based on greedy strategies have been

proposed for the case of bi-partitioning problems (e.g. Kernighan &

Lin, 1970 and Fiduccia & Mattheyses, 1982 ). Their procedures start

with a feasible solution and iteratively move to the best neighbor-

ing solution. Sanchis (1989) extended this idea to multi-way parti-

tioning. 

A GPP variant closely related to this paper is the clique par-

titioning problem, where the nodes of an undirected graph must

be partitioned in order to maximize the total weight of the edges

within each cluster. Three relevant papers on this problem are

Grötschel and Wakabayashi (1989, 1990) and Oosten, Rutten, and

Spieksma (2001) . In Oosten et al. (2001) , the structure of the as-

sociated polytope is studied and a cutting plane algorithm is de-

veloped. Branch-and-bound algorithms are given in Dorndorf and

Pesch (1994) and Jaehn and Pesch (2013) . 

To model practical situations, additional constraints are often

required. For instance, the capacitated partitioning problem (CPP)

considers weights associated with the nodes and limits the to-

tal weight of the nodes in the same cluster. Also, the number

of clusters may be fixed. Holm and Sørensen (1993) present a

branch-and-cut algorithm for this case, where cuts are added to

the formulation to avoid equivalent solutions. Branch-and-price

methods based on different formulations and ways of solving

the subproblems are implemented in Johnson, Mehrotra, and

Nemhauser (1993) and Mehrotra and Trick (1998) . Ferreira, Martin,

de Souza, Weismantel, and Wolsey (1996) propose a multi-cut

formulation for the CPP which is solved in Ferreira, Martin,

de Souza, Weismantel, and Wolsey (1998) using branch-and-cut.

Ji and Mitchell (2007) solve a clique partitioning problem with

a minimum number of nodes in each clique with a branch-

and-price-and-cut algorithm. Benati, Puerto, and Rodríguez-Chía

(2017) also address a CPP with the additional constraint that the

nodes in the same clique must be connected with respect to a

secondary graph. Wong, Young, and Mak (2003) address the CPP

with a heuristic based on clustering. Recent studies on graph

partitioning problems are Bartolini, Casini, and Detti (2014) and

Miyauchi and Sukegawa (2015) . 

The directed graph used to model the above application has one

node associated with each train and arc ( i, j ) exists if and only if

a container must be moved from train i to train j . Thus, the graph

has weights associated with both, nodes and arcs. Nodes have to be

partitioned into clusters with the objective of maximizing the total

weight of the arcs within the clusters, but the total weight of the

nodes in the same cluster is bounded above, and the digraph in-

duced by the clusters cannot contain any circuit (otherwise, some

train would have to enter the loading area more than once). The

problem is consequently named acyclic partitioning problem (APP).

This is an NP-hard problem even if all (node and arc) weights are

equal to 1 (see Garey & Johnson, 1979 ). A heuristic method for the
Please cite this article as: M. Albareda-Sambola, A. Marín and A.M. Ro
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PP is given in Cong, Li, and Bagrodia (1994) . To the best of our

nowledge, the only exact methods for the APP are the pseudo-

olynomial time algorithm by Lukes (1974) for the particular case

efined on trees, and the works Nossack and Pesch (2014a,b) for

he general case. The last works present the first integer program-

ing formulation for the APP and develop an efficient branch-and-

ound algorithm for it. The contribution of our paper is a new for-

ulation able to solve much larger instances than before, based

n the study of several properties of the problem solutions. The

ormulation is enforced with several families of valid inequalities.

overing over all this study the idea of avoiding equivalent, sym-

etric solutions is always present. 

The rest of the paper is organized as follows. In Section 2 we

resent in detail the problem we are considering in the paper. Sev-

ral properties of this problem are highlighted in Section 3 . Re-

arding Integer Programming formulations, Section 4 is devoted to

he previously existing ones and 5 deals with the formulation pro-

osed in this paper. Although the new formulation is the result of

n elaborate process of refinement, still an exhaustive set of valid

nequalities for it has been devised and presented in Section 6 .

e consider also an alternative, larger but tighter formulation in

ection 7 . A complete computational study ( Section 8 ) and some

onclusions ( Section 9 ) close the paper. 

. The problem 

In order to formally define the Acyclic Partitioning Problem

APP), we consider a directed graph (digraph) G = (N, A ) given by

 set of nodes N = { 1 , . . . , n } and a set of arcs A ⊆N × N . Without

oss of generality we assume that (i, i ) �∈ A ∀ i ∈ N . Associated with

ny node i ∈ N there is a weight w i ≥ 0 , and associated with any

rc ( i, j ) ∈ A there is a benefit c ij ≥ 0. 

A partition of N is given by p nonempty clusters N 1 , . . . , N p ⊆
such that 

⋃ p 
s =1 

N s = N and N s ∩ N t = ∅ ∀ s � = t ∈ { 1 , . . . , p} . Given

 > 0, a partition N 1 , . . . , N p is called B -feasible (or simply a

 -partition) if 
∑ 

i ∈ N s w i ≤ B ∀ s ∈ { 1 , . . . , p} . The value of partition

 = { N 1 , . . . , N p } is defined as 

 (P) = 

p ∑ 

s =1 

∑ 

(i, j) ∈ (N s ×N s ) ∩ A 
c i j . 

induces a digraph with nodes P and arcs {( N s ,

 t ): s � = t , ( N s × N t ) ∩ A � = ∅ }. To clearly distinguish G from this

nduced digraph, G will be referred to as the initial digraph. 

A circuit (directed cycle or simply cycle) in G is given by a se-

uence of different nodes (i 1 , . . . , i r ) such that (i q , i q +1 ) ∈ A ∀ q ∈
 1 , . . . , r − 1 } and ( i r , i 1 ) ∈ A . A digraph is acyclic if it does not con-

ain any directed cycle, and is cyclic otherwise. 
dríguez-Chía, Reformulated acyclic partitioning for rail-rail con- 
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The APP is the problem of obtaining the B -feasible partition

f N of maximum value among those whose induced digraph is

cyclic. 

We will assume throughout the remainder of this paper that all

eights w i and the constant B are integer valued. 

. Solution properties 

In order to derive properties of the feasible solutions to the APP,

ome additional definitions are required. 

Two different nodes i, j ∈ N are said to be connected if a se-

uence (i 1 = i, i 2 , . . . , i r = j) exists such that { (i q , i q +1 ) , (i q +1 , i q ) } ∩
 � = ∅ ∀ q ∈ { 1 , . . . , r − 1 } . Connectivity is an equivalence relation-

hip whose classes are called connected components of G . When the

umber of its connected components is 1, G is said to be connected .

Given the initial digraph ( N, A ), i ∈ N is said to be a predecessor

f j ∈ N when there exists a sequence of nodes (i 1 = i, i 2 , . . . , i r = j)

uch that (i q , i q +1 ) ∈ A ∀ q ∈ { 1 , . . . , r − 1 } . It is also said that j is a

uccessor of i . To denote precedence relationships, we will use bi-

ary values αij , defined for i, j ∈ N , taking value 1 only if i is a pre-

ecessor of j . Note that these coefficients are easy to compute from

he adjacency matrix of graph G by means of a greedy procedure. 

roposition 3.1. If G is not connected and the APP is feasible, there

xists an optimal solution to the APP where the nodes of different con-

ected components are allocated to different clusters. 

roof. Let P = { N 1 , . . . , N p } be a feasible partition and assume

hat, for some s ∈ { 1 , . . . , p} , N s contains nodes from different con-

ected components of G . Then, N s can be split into N s = N 

1 
s ∪ N 

2 
s ,

here N 

1 
s contains all the nodes belonging to one of the con-

ected components, and N 

2 
s contains those belonging to the others.

onsider the partition P 

′ = (P \ { N s } ) ∪ { N 

1 
s , N 

2 
s } . P 

′ is clearly B -

easible since the sizes of the clusters in P 

′ are bounded by those

n P . 

Also, since the graph induced by P is acyclic, any cycle in the

raph induced by P 

′ should involve nodes N 

1 
s and N 

2 
s , but these

odes cannot be connected in the graph induced by P 

′ since sets

 

1 
s and N 

2 
s contain nodes belonging to different connected compo-

ents of the initial graph. Consequently, the graph induced by P 

′ 
s also acyclic. 

The value of the partition P 

′ is exactly the same as the value

f P, since no arcs exist connecting the two new clusters. Conse-

uently, v (P 

′ ) = v (P) and P 

′ is also optimal. 

Iterating in this way until all nodes of different connected com-

onents are allocated to different clusters, a new partition with

his property and the same value is obtained. �

Note that, according to this property, an optimal solution to the

PP for a general graph can be efficiently found by combining the

ptimal partitions of its connected components. Taking advantage

f this fact, and without loss of generality, from now on we will

ssume that the initial graph G is connected. 

Observe now that a node i ∈ N is at the same time a successor

nd a predecessor of another node j ∈ N, j � = i , if and only if there

xists a directed cycle in G containing i and j . Observe also that, in

his case, a partition of N such that i ∈ N s and j ∈ N t with s � = t will

ecessarily induce a cyclic digraph. As a consequence, all nodes be-

onging to a directed cycle in ( N, A ) must be assigned to the same

luster at any feasible solution to the APP. This fact makes it ad-

isable to preprocess the original graph, by shrinking each cycle

nto one single node, as it was already done in Nossack and Pesch

2014a) . To be precise, given a cycle (i 1 , . . . , i r ) , replace nodes

 i 1 , . . . , i r } with one single node, η, with weight w η = 

∑ r 
s =1 w i s .

or each node i ∈ N \ { i 1 , . . . , i r } , include the arc ( i, η) (resp. ( η,

 )) if and only if for some s ∈ { 1 , . . . , r} , ( i, i s ) ∈ A (resp. ( i s , i ) ∈ A ).

he benefits of these arcs are computed as c iη = 

∑ r 
s =1 c i,i s and
Please cite this article as: M. Albareda-Sambola, A. Marín and A.M. Ro
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 ηi = 

∑ r 
s =1 c i s ,i . From an optimal solution of the APP defined on

he resulting graph, an optimal solution to the original problem

nstance can be built by including nodes { i 1 , . . . , i r } in the cluster

o which η has been assigned. The value of this partition will be

he value of the partition in the reduced graph plus the sum of the

alues of the arcs with both endpoints in { i 1 , . . . , i r } . 
This procedure can be repeated until no cycles are left in the

raph, making it acyclic. Thus from now on we will assume that

he initial graph G is both connected and acyclic. Under this as-

umption it is easy to check whether an instance of the APP is

easible. Indeed, a necessary and sufficient condition for feasibility

n this case is: w i ≤ B ∀ i ∈ N . 

xample 3.1. To illustrate this transformation, we will use the ex-

mple depicted in Fig. 2 , where node numbers are given inside

he circles representing them, node weights are given next to the

odes and arc benefits are given close to the arcs. Observe that the

ycle (1,11,6) can be shrunk to a single node, η, with weight 5. In

urn, ( η, 2) would also form a cycle that can be shrunk into a sin-

le node, a , with weight 7, and the cycle (3,5,12,8) can be shrunk

nto one node, b , with weight 9. In the right hand side of the fig-

re, we display the resulting graph, where squares represent nodes

btained by shrinking one or more cycles. In this case, node a rep-

esents nodes {1, 2, 6, 11} of the original graph, and node b rep-

esents nodes {3, 5, 8, 12}. Benefit c 7 a , for example, is obtained as

he sum c 71 + c 76 = 1 + 3 = 4 . 

It is well known that a digraph is acyclic if and only if it ad-

its a topological order, i.e. , a mapping σ :N −→ N such that, for

ny ( i, j ) ∈ A, σ ( i ) < σ ( j ). Such a mapping is shown for the reduced

raph in Fig. 2 , next to the nodes in boxed numbers. Indeed, by

uitably renaming the graph nodes, we can assume that i < j for

ny ( i, j ) ∈ A . This assumption will also be made in what follows.

oreover, since the graph induced by any feasible solution must

lso be acyclic, it must also admit a topological order. Based on

his idea, our formulation will index the clusters defining a topo-

ogical order on the induced graph, so as to guarantee that it is

cyclic. These ideas can be further exploited using the concept of

uccessors of a node as shown in the next propositions. Here, we

enote with σ−1 the inverse mapping of mapping σ . 

roposition 3.2. Let i < j ∈ N such that αi j = 1 . If nodes i and j are

ssigned to the same cluster in a feasible partition, this cluster must

ontain the whole set 

 

i 
j := { � ∈ { i + 1 , . . . , j − 1 } : αi� · α� j = 1 } . 
roof. Let i < j ∈ N with αi j = 1 and � ∈ N 

i 
j 
, and consider a partition

here i and j are assigned to cluster N s and � is assigned to cluster

 t with t � = s . Then, since αi� = 1 and α� j = 1 , N t is both, a succes-

or and a predecessor of N s in the graph induced by the partition.

herefore, this partition is infeasible. �

We next prove another property that will help avoiding equiva-

ent optimal APP solutions. 

roposition 3.3. For any feasible instance of APP there exists an op-

imal partition P and a topological order σP 

on the digraph induced

y P such that, for all t ∈ { 1 , . . . , | P| − 1 } with σ−1 
P 

(t) � = ∅ , and
−1 
P 

(t + 1) � = ∅ , ∑ 

 ∈ σ−1 
P 

(t) 

w i + 

∑ 

i ∈ σ−1 
P 

(t+1) 

w i > B. 

roof. If the above condition does not hold for a given solution,

t is possible to build a new solution by merging the two clusters
−1 
P 

(t) and σ−1 
P 

(t + 1) . The cluster obtained doing so will be B -

easible, and no cycles will be formed. The value of the obtained

olution is at least as large as the value of the original one. �
dríguez-Chía, Reformulated acyclic partitioning for rail-rail con- 
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Fig. 2. Reduction of a cyclic graph. 
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Remark 3.1. Observe that the above proposition seems to contra-

dict Proposition 3.1 , in the sense that, Proposition 3.1 might sug-

gest using more clusters than necessary and Proposition 3.3 tries

to use the smallest possible number of clusters. However, this is

not the case, since Proposition 3.3 assumes that the graph is con-

nected and then Proposition 3.1 is not applicable. 

4. Previous formulations 

Nossack and Pesch (2014a) developed the first IP formulation

for the APP. They considered auxiliary integer variables π t , t ∈ N ,

together with the following families of binary variables: 

x it = 

{ 
1 , if node i belongs to cluster N t , 
0 , otherwise, 

∀ i, t ∈ N, 

z i jt = 

{ 
1 , if nodes i and j belong to cluster N t , 
0 , otherwise, 

∀ i < j ∈ N, t ∈ N, 

y st = 

{ 
1 , if arc (N s , N t ) belongs to the induced digraph, 
0 , otherwise, 

∀ s � = t ∈ N. 

The model formulation, here named (NP), is given by 

(NP) max 
∑ 

s ∈ N 

∑ 

i, j∈ N 
i< j 

(c i j + c ji ) z i js 

s.t. 
∑ 

s ∈ N 
x is = 1 ∀ i ∈ N (1)

∑ 

i ∈ N 
w i x is ≤ B ∀ s ∈ N (2)

z i js ≤ x is ∀ s ∈ N, i < j ∈ N (3)

z i js ≤ x js ∀ s ∈ N, i < j ∈ N (4)

x is + x jt − 1 ≤ y st ∀ (i, j) ∈ A, s � = t ∈ N (5)

πs − πt + ny st ≤ n − 1 ∀ s � = t ∈ N (6)

∑ 

i ∈ N 
x is ≤

∑ 

i ∈ N 
x i,s −1 ∀ s ∈ { 2 , . . . , n } (7)

2 z ihs ≤ z i js + z jhs ∀ s ∈ N, i < j < h ∈ N : j ∈ N 

i 
h 

(8)

 

Please cite this article as: M. Albareda-Sambola, A. Marín and A.M. Ro
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z ihs ≤ z i js ∀ s ∈ N, i < j < h ∈ N : j ∈ N 

i 
h (9)

z i js + z jhs − z ihs ≤ 1 ∀ s ∈ N, i < j < h ∈ N (10)

z i js − z jhs + z ihs ≤ 1 ∀ s ∈ N, i < j < h ∈ N (11)

− z i js + z jhs + z ihs ≤ 1 ∀ s ∈ N, i < j < h ∈ N (12)

x is ∈ { 0 , 1 } ∀ i, s ∈ N 

y st ∈ { 0 , 1 } ∀ s � = t ∈ N 

πs ∈ Z ∀ s ∈ N 

z i js ∈ { 0 , 1 } ∀ s ∈ N, i < j ∈ N. 

Here, constraints (1) ensure that each node is assigned to a

luster, constraints (2) limit the weight of the clusters, constraints

3) –(4) ensure that two nodes belonging to different clusters do

ot contribute the objective, constraints (5) set the right arcs for

he induced digraph. Circuits in the induced digraph are forbidden

ith constraints (6) , a version of the Miller–Tucker–Zemlin (MTZ)

onstraints originally designed for the TSP (see Miller, Tucker, &

emlin, 1960 ). 

The remaining constraints are either valid inequalities or op-

imality constraints, added to the model to avoid symmetric so-

utions (it is the case of (7) , that sort the clusters by their sizes)

nd/or improve the upper bound provided by the LP-relaxation of

NP). In particular, when nodes i and h are assigned to cluster s

 z ihs = 1 ) and another node j belongs to a directed path between i

nd h , (8) forces j to belong to N s as well. When i and j are in dif-

erent clusters, (9) prevents the successors of j from belonging to

he same cluster as i . Finally, (10) –(12) are transitivity constraints

see Grötschel & Wakabayashi, 1990 ). 

In a different paper, Nossack and Pesch (2014b) presented two

ther IP formulations for the APP. In the first one, the so-called

ompact formulation , they replaced the above z variables by the ag-

regated ones: 

 i j = 

{ 
1 , if nodes i and j belong to the same cluster, 
0 , otherwise, 

∀ i < j ∈ N. 

he formulation is 

NPC) max 
∑ 

(i, j) ∈ A 
c i j z i j 

s.t. (1), (2), (5), (6) 

z i j + x is − x js ≤ 1 ∀ i < j ∈ N, s ∈ N (13)
dríguez-Chía, Reformulated acyclic partitioning for rail-rail con- 
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 z ih ≤ z i j + z jh ∀ i < j < h ∈ N : j ∈ N 

i 
h (14) 

 ih ≤ z i j ∀ i < j < h ∈ N : j ∈ N 

i 
h (15) 

 i j + z jh − z ih ≤ 1 ∀ i < j < h ∈ N (16) 

 i j − z jh + z ih ≤ 1 ∀ i < j < h ∈ N (17) 

− z i j + z jh + z ih ≤ 1 ∀ i < j < h ∈ N (18) 

 is ∈ { 0 , 1 } ∀ i, s ∈ N 

 st ∈ { 0 , 1 } ∀ s � = t ∈ N 

s ∈ Z ∀ s ∈ N 

 i j ∈ { 0 , 1 } ∀ i, j ∈ N, i < j. 

Similarly to (3) and (4) , constraints (13) ensure that two nodes

elonging to different clusters do not contribute the objective. Con-

traints (14) –(18) are valid inequalities analogous to (8) –(12) . 

The last formulation from Nossack and Pesch (2014b) considers

he set S of clusters S satisfying the following three conditions:

i) the capacity constraint, (ii) if i, h ∈ S then N 

i 
h 

⊂ S, and (iii) i ∈ S ,

j �∈ S and j ∈ N 

i 
h 

then h �∈ S. Also, they defined e S = (e S 
1 
, . . . , e S n ) as

n incidence vector of a cluster S ∈ S , where e S 
i 

= 1 if node i ∈ S

nd 0 otherwise. The formulation considers the auxiliary integer

ariables πt , t ∈ N, for each S ∈ S , 

 S = 

{
1 , if cluster S belongs to the chosen partition , 

0 , otherwise , 

nd, for each S 1 � = S 2 ∈ S, S 1 ∩ S 2 = ∅ , 

 S 1 S 2 = 

{
1 , if arc (S 1 , S 2 ) belongs to the induced digraph, 
0 , otherwise . 

he so-called augmented set partitioning formulation is the follow-

ng. 

NPA) max 
∑ 

s ∈ S 

c S x S (19) 

.t. 
∑ 

S∈ S 

e S i x S = 1 ∀ i ∈ N (20) 

 

S 1 
i 

x S 1 + e S 2 
i 

x S 2 − 1 ≤ y S 1 S 2 ∀ (i, j) ∈ A, S 1 � = S 2 ∈ S , S 1 ∩ S 2 = ∅ 
(21) 

S 1 − πS 2 + ny S 1 S 2 ≤ n − 1 ∀ S 1 � = S 2 ∈ S , S 1 ∩ S 2 = ∅ 
(22) 

 S ∈ { 0 , 1 } ∀ S ∈ S 

 S 1 S 2 ∈ { 0 , 1 } ∀ S 1 � = S 2 ∈ S , S 1 ∩ S 2 = ∅ 
t ∈ Z ∀ t ∈ N, 

here c S = 

∑ 

(i, j) ∈ A c i j e 
S 
i 
e S 

j 
∀ S ∈ S . The objective function

19) maximizes the total benefit of the inter-cluster arcs, con-

traints (20) guarantee that each node belongs to one cluster,

21) force y and x variables to take consistent values. Again, MTZ

onstraints (22) forbid circuits in the induced digraph. 

As already stated by the authors, the two last formula-

ions are rather unpractical. Specifically, (NPC) has a weak LP-

elaxation and exhibits awkward symmetries, and (NPA) contains

any constraints and variables. As a consequence, Nossack and

esch (2014b) does not present any computational study of these

ormulations. 
Please cite this article as: M. Albareda-Sambola, A. Marín and A.M. Ro
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. New formulation 

In this section, we introduce a new formulation for the APP.

t uses solely x -variables as defined in formulation (NP) and the

ubset of the z -variables from (NPC) { z ij : ( i, j ) ∈ A } (note that this

mplies i < j ). Additionally, for each pair i < j ∈ N with αi j = 1 , we

efine A ij as: 

 i j = w i + w j + 

∑ 

� ∈ N i 
j 

w � . 

ote that any cluster containing both, i and j , will have a total node

eight of, at least, A ij . The proposed formulation, denoted by (P),

s 

P) max 
∑ 

(i, j) ∈ A 
c i j z i j (23) 

.t. 
∑ 

s ∈ K 
x is = 1 ∀ i ∈ N (24) 

 

i ∈ N 
w i x is ≤ B ∀ s ∈ K (25) 

 

t≥s 

x it + 

∑ 

t<s 

x jt ≤ 1 ∀ i < j ∈ N : αi j = 1 , A i j ≤ B, ∀ s ∈ K (26) 

 

t≥s 

x it + 

∑ 

t≤s 

x jt ≤ 1 ∀ i < j ∈ N : αi j = 1 , A i j > B, ∀ s ∈ K (27) 

 i j + 

∑ 

t<s 

x it + 

∑ 

t≥s 

x jt ≤ 2 ∀ (i, j) ∈ A, ∀ s ∈ K (28) 

 is ∈ { 0 , 1 } ∀ i ∈ N, ∀ s ∈ K 

 i j ∈ { 0 , 1 } ∀ (i, j) ∈ A. 

Here, indices corresponding to the potential clusters are defined

n the set K = { 1 , . . . , k } , where k is an upper bound on the num-

er of clusters in the optimal APP solution. In forthcoming sections

e will discuss how to obtain its value. Observe that a possible

alue for k is n , but, obviously, by obtaining smaller k values we

an reduce the size of formulation (P). 

The objective function (23) measures the total benefit obtained

rom the arcs with both extremes in the same cluster. Each node

ust be assigned to one cluster, and this is guaranteed by con-

traints (24) . The total weight of the nodes assigned to any cluster

annot exceed the bound B , as stated by constraints (25) . The in-

uced digraph cannot contain circuits, which is achieved by topo-

ogically ordering the clusters. Therefore, if αi j = 1 for i, j ∈ N , node

 cannot belong to a cluster with a higher index than the cluster

f node j . That is, for a given s value, if node j belongs to one

f the first s − 1 clusters, i cannot belong to cluster s nor to one

ith a higher index. If this happens the left hand side of the cor-

esponding constraint (26) will take value 2. When i and j cannot

e allocated to the same cluster because A ij > B , index s can be also

ncluded in the second summation as stated by constraints (27) . 

In order to guarantee that the z -variables in the objective func-

ion reflect the allocation structure given by the x -variables, we use

onstraints (28) . Here, given ( i, j ) ∈ A , if j is allocated to a cluster in

osition s or later, and i is allocated to a cluster in a position before

 , they cannot be in the same cluster. The corresponding constraint

28) sets z ij to zero. 

Observe that, given the shape of the objective function and con-

traints (28) , the integrality constraints on the z -variables can be

elaxed. Indeed, since the problem consists in maximizing the sum

f the benefits c ij ( ≥ 0) times the corresponding z -variables, then

 -variables will take the largest possible value. In addition, using
dríguez-Chía, Reformulated acyclic partitioning for rail-rail con- 
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(28) , if i and j are in the same cluster 
∑ 

t<s x it + 

∑ 

t≥s x jt = 1 for all

s ∈ K , then z ij will take value 1; otherwise, we can find s 0 ∈ K such

that 
∑ 

t<s 0 
x it + 

∑ 

t≥s 0 
x jt = 2 and then z i j = 0 . 

6. Formulation improvements 

6.1. Preprocessing 

Formulation (P) can be preprocessed by fixing some z -variables

and x -variables to 0. 

First, by Proposition 3.2 we can forbid beforehand that some

pairs of nodes belong to the same cluster. Using the previously

computed values A ij we can fix 

z i j = 0 ∀ (i, j) ∈ A : A i j > B. (29)

Second, consider a node i and the set of its successors, S i . Con-

sidering the total weight of these successors plus the weight of i ,

ˆ w = w i + 

∑ 

j∈ S i w j , it is clear that there is a number of clusters, at

the end of the topologically ordered list, where i cannot be allo-

cated. Indeed, if i were assigned to cluster s and the total capac-

ity of clusters s, . . . , k (which is equal to (k − s + 1) B ) is less than

ˆ w , the remaining nodes could not be correctly allocated. A similar

reasoning can be made for the set of predecessors of i, P i . Accord-

ingly, 

x is = 0 ∀ i ∈ N, s ∈ K : (k − s + 1) B < w i + 

∑ 

j∈ S i 
w j , (30)

x is = 0 ∀ i ∈ N, s ∈ K : sB < w i + 

∑ 

j∈ P i 
w j . (31)

6.2. Valid inequalities 

In this section we derive several valid inequalities for formula-

tion (P). First we consider those previously used in the literature,

i.e., in formulation (NPC). 

Transitivity constraints (16), (17) and (18) can be incorporated

to formulation (P) but need to be adapted in order to include

only well-defined variables, i.e., ∀ i < j < � ∈ N : (i, j) , (i, � ) , ( j, � ) ∈
A, A i j , A i� , A j� ≤ B : 

z i� ≥ z i j + z j� − 1 

z i j ≥ z i� + z j� − 1 

z j� ≥ z i j + z i� − 1 

} 

(32)

The meaning of these constraints is clear: Whenever a node i

shares a cluster with two other nodes, j and � , the latter two nodes

must also share that cluster. 

According to the variable definitions and Proposition 3.2 , the

following inequalities are also valid: 

z i� ≤ z i j ∀ i < j < � ∈ N : (i, j) , (i, � ) ∈ A, A i j , A i� ≤ B, j ∈ N 

i 
� 

z i� ≤ z j� ∀ i < j < � ∈ N : (i, � ) , ( j, � ) ∈ A, A i� , A j� ≤ B, j ∈ N 

i 
� 

}
. (33)

Note that (33) are tighter than the related constraints (14) and (15) ,

since (14) is obtained as the sum of both constraints in (33) . The

ideas behind these sets of constraints were also used for formula-

tion (NPC), although they were not stated exactly in the same way.

To the best of our knowledge, the valid inequalities that follow are

presented in this work for the first time. 

When three nodes, i < j < � , are allocated to the same cluster,

any other node in the directed paths between them must belong

to this cluster. Then, the total weight of that cluster is bounded

below by 

A 

′ 
i j� = w i + w j + w � + 

∑ 

h ∈ N i 
j 
∪ N j � ∪ N i � \{ j} 

w h . 

So, if A 

′ 
i j� 

> B, the three nodes cannot share a cluster. Taking into

account the transitivity, at most one of the variables z ij , z j � and z i � 
Please cite this article as: M. Albareda-Sambola, A. Marín and A.M. Ro
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an take value one. Therefore, for all i < j < � ∈ N such that A 

′ 
i j� 

> B,

he following are valid inequalities for (P): 

z i j + z j� + z i� ≤ 1 (i, j) , (i, � ) , ( j, � ) ∈ A, A i j , A i� , A j� ≤ B 

z i j + z i� ≤ 1 (i, j) , (i, � ) ∈ A, A i j , A i� ≤ B, but ( j, � ) �∈ A and/or A j� > B 

z i� + z j� ≤ 1 (i, � ) , ( j, � ) ∈ A, A i� , A j� ≤ B, but (i, j) �∈ A and/or A i j > B 

z i j + z j� ≤ 1 (i, j) , ( j, � ) ∈ A, A i j , A j� ≤ B, but (i, � ) �∈ A and/or A i� > B. 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

(34)

Capacity constraints (25) depend only on the x -variables. They

annot be stated using z -variables since z ij is not defined if (i, j) �∈
 . Nevertheless, valid inequalities in the same spirit are: 

w j + (w i + 

∑ 

h ∈ N i 
j 
w h ) z i j + (w � + 

∑ 

h ∈ N j � w h ) z j� + 

∑ i −1 
h =1 

(h, j) ∈ A 
w h z h j 

+ 

∑ n 
h = � +1 
( j,h ) ∈ A 

w h z jh + 

∑ j−1 
h = i +1 
(h, j) ∈ A 
αih =0 

w h z h j + 

∑ � −1 
h = j+1 
( j,h ) ∈ A 
αh� 

=0 

w h z jh ≤ B 

∀ i < j < � ∈ N : (i, j) , ( j, � ) ∈ A. 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(35)

Given ( i, j ), ( j , � ) ∈ A , the left hand side of the above inequality

rovides a lower bound on the sum of the weights of the nodes in-

luded in the same cluster as j . Indeed, the first term is the weight

f node j , the second (third) addend accounts for the weights of

he nodes in any path from i to j (from j to � ), excluding j because

his weight is already included in the first term, whenever i and j

 j and � ) are in the same cluster ( Proposition 3.2 ). The fourth (fifth)

ddend is the sum of weights of the nodes, such that,: (i) have in-

ices smaller than i (bigger than � ), (ii) are in the same cluster as j ,

nd (iii) are linked by an arc with j (this third condition guarantees

hat these nodes have not been already included in the previous

wo addends because we are assuming the graph is topologically

rdered). The sixth (seventh) addend gives the sum of weights of

he nodes belonging to same cluster as j with indices between i

nd j ( j and � ), linked to j by an arc but not belonging to any path

etween i and j ( j and � ); this guarantees that these nodes have

ot been already included in the previous addends. 

Taking advantage of the fact that if two extreme points of a

ath belong to the same cluster, then the full path is also con-

ained in that cluster, additional capacity constraints can be stated

s follows: 

 i + 

i −1 ∑ 

j=1: 
( j,i ) ∈ A 

( ∑ 

� ∈ L j 
w � 

) 

z ji + 

n ∑ 

j= i +1: 
(i, j) ∈ A 

( ∑ 

� ∈ R j 
w � 

) 

z i j ≤ B (36)

or all i ∈ N , any family of sets L j satisfying 

 j ⊆ { j} ∪ N 

j 
i 
, L j 1 ∩ L j 2 = ∅ ∀ j 1 � = j 2 , 

i −1 ⋃ 

j=1: 
( j,i ) ∈ A 

L j = P i 

nd any family of sets R j satisfying 

 j ⊆ { j} ∪ N 

i 
j , R j 1 ∩ R j 2 = ∅ ∀ j 1 � = j 2 , 

n ⋃ 

j= i +1: 
(i, j) ∈ A 

R j = S i . 

ote that there can be empty sets L j and/or R j . 

To separate this family of constraints we proceed as follows. Let

( ̄x , ̄z ) be the optimal solution to the linear problem. Then, for each

 ∈ N , let 

¯
 j = { � ∈ { j} ∪ N 

j 
i 

: z̄ ji = max 
p 

{ ̄z pi : p ∈ P � }} 
here ties are broken in lexicographical order. Similarly, let 

¯
 j = { � ∈ { j} ∪ N 

i 
j : z̄ i j = max 

p 
{ ̄z ip : p ∈ S � }} . 

iven a tolerance T , if 

 i + 

i −1 ∑ 

j=1: 
( j,i ) ∈ A 

⎛ 

⎝ 

∑ 

� ∈ ̄L j 

w � 

⎞ 

⎠ z̄ ji + 

n ∑ 

j= i +1: 
(i, j) ∈ A 

⎛ 

⎝ 

∑ 

� ∈ ̄R j 

w � 

⎞ 

⎠ z̄ i j ≥ B + T , 
dríguez-Chía, Reformulated acyclic partitioning for rail-rail con- 
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hen the corresponding violated inequality is added to the formu-

ation. 

Constraints (28) ensure that z -variables take value 0 when re-

uired. These constraints can be extended to the following family

f valid inequalities: 

 i j + z i� + 

∑ 

t≥s 

(x jt + x �t ) + 

∑ 

t<s 

x it ≤ 3 

 i < j < � ∈ N : (i, j) , (i, � ) ∈ A, A i j , A i� ≤ B, α j� = 0 , 

 

′ 
i j� > B, ∀ s ∈ K. (37) 

When ( i, j ) ∈ A , constraints (26) can be extended to the follow-

ng set of valid inequalities: 

 

t≥s 

x it + 

∑ 

t≤s 

x jt ≤ 1 + z i j ∀ (i, j) ∈ A, A i j ≤ B, ∀ s ∈ K. (38)

Recall that formulation (P) uses an upper bound k on the num-

er of clusters of the optimal partition. Therefore, the number

f actual (nonempty) clusters in the obtained solution might be

maller than k . In this case, formulation (P) would leave some

mpty dummy clusters. These empty clusters introduce an awk-

ard symmetry, since, according to (P), they can occupy arbitrary

ositions in the list { 1 , . . . , k } . In order to break those symmetries,

he following additional constraints can be added to force that the

ctual clusters have the lowest indices, and the empty ones, if any,

re grouped at the end of the list: 

 

i ∈ N 
w i x it ≤ B 

∑ 

i ∈ N 
x is ∀ s < t ≤ k, (39)

 

i ∈ N 

∑ 

t>s 

x it ≤ (n − s ) 
∑ 

i ∈ N 
x is ∀ s < k. (40)

onstraints (39) are based on node weights. If cluster s is empty,

he right-hand side of (39) will be 0, forcing the clusters with

reater indices to be empty as well; otherwise B is used to bound

he right-hand side. Instead, (40) are based on the number of

odes. A zero value in the sum of the right-hand side will push all

ariables in the left-hand side, which correspond to clusters with

 larger index, down to 0. In this case the left hand side contains

ore variables and the upper bound when the right-hand side is

ot zero is given by the maximum number of nodes that can be

llocated to the last n − s clusters. In the worst case this number

s n − s . 

The following valid inequalities also follow from

roposition 3.3 . 

∑ 

i ∈ N\{ j} 
α ji =0 

w i (x is + x i,s +1 ) ≥ (B + 1) 
k ∑ 

t= s +2 

x jt ∀ s ≤ k − 2 , ∀ j ∈ N, (41)

 

i< j 

w i x is + 

∑ 

i> j 
α ji =0 

w i x is + 

∑ 

i ∈ N 
w i x i,s +1 ≥ (B + 1) 

∑ 

t>s 

x jt 

 s < k, ∀ j ∈ N. (42) 

e next explain the rationale behind valid inequalities (41) ; simi-

ar arguments can be used to show that inequalities (42) are valid.

he idea behind (41) is the following: given s ≤ k − 2 if there is a

onempty cluster with index greater than s + 1 (left hand side of

41) equal to (B + 1) ), then the sum of the weights associated with

he nodes in cluster s and s + 1 should be at least B + 1 , otherwise

t would contradict Proposition 3.3 . 

An additional family of valid inequalities is ∑ 

i ∈ N: 

x is ≤ 1 ∀ s ∈ K. (43)
w i >B/ 2 c
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.3. Bounding the number of clusters 

Observe that if the maximum number of clusters to be used ( k )

s small, the dimension of formulation (P) is drastically reduced.

herefore, the problem will be solved much easily if a small value

f k is available, instead of the trivial bound on the number of

lusters, n . However, it would be a wrong approach to solve the

PP using any value k and then accepting the optimal solution

n case of feasibility. Although this approach is correctly adopted

or other problems with similar clusters structure, like the search

f the chromatic number of a graph ( Nobibon, Hurkens, Leus, and

pieksma, 2010, 2012 ), in our case feasibility does not guarantee

ptimality, as we show in the example illustrated in Fig. 3 where

 i = 1 ∀ i , B = 3 and the benefits of the arcs are depicted next to

hem. Taking a value of k = 8 , the optimal solution to this instance

s given in Fig. 4 with optimal value 15.6. This solution only uses 6

ut of the 8 possible clusters. Nevertheless, the actual optimal APP

olution, with value 16, requires 9 clusters (see Fig. 5 ). The result

iven in Proposition 6.1 has been used to fix the value of k in our

ormulations: 

roposition 6.1. An optimal partition P to APP exists, satisfying 

 P | ≤ min 

⎧ ⎨ 

⎩ 

n, 2 

⌊∑ 

i ∈ N w i 

B + 1 

⌋
+ 

⎡ 

⎢ ⎢ ⎢ 

∑ 

i ∈ N w i − (B + 1) 
⌊ ∑ 

i ∈ N w i 

B +1 

⌋ 

B 

⎤ 

⎥ ⎥ ⎥ 

⎫ ⎬ 

⎭ 

.

(44) 

roof. It suffices to show 

 P | ≤ 2 

⌊∑ 

i ∈ N w i 

B + 1 

⌋
+ 

⎡ 

⎢ ⎢ ⎢ 

∑ 

i ∈ N w i − (B + 1) 
⌊ ∑ 

i ∈ N w i 

B +1 

⌋ 

B 

⎤ 

⎥ ⎥ ⎥ 

. (45)

y Proposition 3.3 , the total weight of any pair of non-empty con-

ecutive clusters can be assumed to be at least equal to B + 1

taking into account that all weights and B are integer num-

ers). Assuming that this lower bound is tight, the first addend of

45) keeps track of the filled couples of clusters. The numerator of

he second addend stands for the remaining weight. If this rest,

hich is less than or equal to B , is not zero, an additional cluster

ust be added to the account. �

. Alternative formulation 

It became evident during the development of valid inequalities

hat those based on z -variables could be reinforced by including in

he formulation additional z ij -variables with i < j ∈ N and (i, j) �∈ A .

t the expenses of having a larger formulation, there is a chance of

btaining better upper bounds, since the new constraints will be

ighter on the z -variables in the objective function (23) . To check

f this alternative gives rise to better computational results, a new

ormulation (P’) is considered: 

P’) max 
∑ 

(i, j) ∈ A 
c i j z i j (46) 

.t. (24),(25),(26),(27) 

 i j + 

∑ 

t<s 

x it + 

∑ 

t≥s 

x jt ≤ 2 ∀ i < j ∈ N, ∀ s ∈ K 

 is ∈ { 0 , 1 } ∀ i ∈ N, ∀ s ∈ K 

 i j ∈ { 0 , 1 } ∀ i < j ∈ N. (47) 

he preprocessing phase developed in Section 6.1 is still valid for

his formulation. In addition, similarly to formulation (P), the bina-

ity constraints on the z -variables could be dropped from (P’). From

he range of valid inequalities developed for formulation (P), those

ontaining only x -variables remain the same for (P’): (39) –(43) . 
dríguez-Chía, Reformulated acyclic partitioning for rail-rail con- 
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Fig. 3. Instance for counterexample. 

Fig. 4. Solution of the instance from Fig. 3 with k = 8 . 

 

 

 

 

 

 

 

t

w  

 

f

z

∀  

∑
 

8

 

a  

u  
Some other valid inequalities need to be modified in order to

include the additional z -variables in (P’). Constraints (32), (33) and

(34) are replaced, respectively, by: 

z i� ≥ z i j + z j� − 1 

z i j ≥ z i� + z j� − 1 

z j� ≥ z i j + z i� − 1 

} 

∀ i < j < � ∈ N : A i j , A i� , A j� ≤ B, (48)

z i� ≤ z i j ∀ i < j < � ∈ N : A i j , A i� ≤ B, j ∈ N 

i 
� 

z i� ≤ z j� ∀ i < j < � ∈ N : A i� , A j� ≤ B, j ∈ N 

i 
� , 

}
(49)

z i j +z j� + z i� ≤ 1 ∀ i < j < � ∈ N : A i j , A i� , A j� ≤ B, A 

′ 
i j� 

> B, 

z i j +z i� ≤ 1 ∀ i < j < � ∈ N : A i j , A i� ≤ B and A j� > B 

z i� +z j� ≤ 1 ∀ i < j < � ∈ N : A i� , A j� ≤ B and A i j > B 

z i j +z j� ≤ 1 ∀ i < j < � ∈ N : A i j , A j� ≤ B and A i� > B, 

⎫ ⎪ ⎬ 

⎪ ⎭ 

. 

(50)

Note that constraints (35) and (36) used the capacity of the clus-

ters to limit the values of the z -variables. Formulation (P’) allows
Please cite this article as: M. Albareda-Sambola, A. Marín and A.M. Ro
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o extend and simplify these constraints in the following way: 

 i + 

i −1 ∑ 

j=1 

w j z ji + 

n ∑ 

j= i +1 

w j z i j ≤ B ∀ i ∈ N. (51)

In addition, constraints (37) and (38) of (P) are replaced by the

ollowing ones: 

 i j + z i� + 

∑ 

t≥s 

(x jt + x �t ) + 

∑ 

t<s 

x it ≤ 3 

 i < j < � ∈ N : α j� = 0 , A i j , A i� ≤ B, A 

′ 
i j� > B, ∀ s ∈ K, (52)

 

t≥s 

x it + 

∑ 

t≤s 

x jt ≤ 1 + z i j ∀ i < j ∈ N, A i j ≤ B, ∀ s ∈ K. (53)

. Computational study 

In order to evaluate the performance of the new formulations

nd valid inequalities, a computational study has been carried out

sing the unique data set in the literature, presented in Nossack
dríguez-Chía, Reformulated acyclic partitioning for rail-rail con- 
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Fig. 5. Optimal solution of the instance from Fig. 3 . 

a  

i  

a  

t  

v  

m  

c  

i  

t

 

v  

w  

g  

u  

i  

d  

a  

w  

a  

i  

t  

S  

z

 

a  

b  

w  

s  

w  

r  

c  

i  

s  

w  

(  

3  

t  

r  

n  

t  

i  

p  

Table 1 

Comparing times of formulation (NP) in different computers. 

n OPT B m Clusters Times (s) Solved 

k opt Theirs Ours Ours 

Unit weights 

6 104.16 3.0 11.7 2.6 0.28 0.09 240 

8 127.08 3.0 19.1 3.3 0.91 0.40 240 

12 162.04 3.0 35.6 5.1 − 6.51 240 

16 196.21 3.0 53.4 6.7 − − 189 

20 425.40 7.0 72.0 3.7 − − 77 

24 477.67 7.0 90.4 4.0 − − 3 

28 522.90 7.0 110.7 4.9 − − 0 

30 546.48 7.0 120.4 5.2 − − 0 

32 575.78 7.0 130.4 5.5 − − 0 

Random weights 

6 29.25 3.0 11.7 4.8 0.19 0.10 240 

8 39.45 3.0 19.1 6.3 0.46 0.61 240 

12 44.59 3.0 35.6 9.5 9.89 3.83 240 

16 58.91 3.0 53.4 12.5 − − 233 

20 99.24 7.0 72.0 14.0 − − 77 

24 115.82 7.0 90.4 16.8 − − 97 

28 122.95 7.0 110.7 19.6 − − 26 

30 132.15 7.0 120.4 20.9 − − 16 

32 143.08 7.0 130.4 22.2 − − 6 
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i  

K  

i  
nd Pesch (2014a) . This set contains a total of 5760 instances, with

nteger data, and a number of trains (nodes) ranging between 6

nd 40. The number of tracks, which gives the cluster capacity B ,

akes values {2, 4} for instances with no more than 16 trains, and

alues {6, 8} for the larger ones. Instances are grouped into two

ain classes according to the node weights distribution. In the first

lass, node weights ω i are randomly taken from { 1 , . . . , B } , while

n the second class all weights are equal to 1 (each train uses one

rack). 

The solver used in the study was FICO Xpress Mosel 64-bit

4.8.2 under operating system Ubuntu 16.04 LT. The computer

as an Intel Xeon(R) CPU E5-2623 v3, 3.00 gigahertz with 16 gi-

abyte of memory. Unless stated otherwise, default values were

sed for all but one of the parameters of Xpress. The only mod-

fication was to discard nodes of the branching tree when the

ifference between their upper bound and the incumbent was

t most 0.99, since the optimal values of our instances are al-

ays integer. Although the binarity of the z -variables is guar-

nteed at any optimal solution to formulations (P) and (P’), we

ncluded the corresponding constraints in the formulation since

he solver seemed to perform better this way. The results from

ection 6.1 were applied to all instances to fix to zero some x - and

 -variables. 

We aim to compare our results with those obtained in Nossack

nd Pesch (2014a) using both, formulation (NP) and a customized

ranch-and-bound algorithm. The results reported in that paper

ere obtained on a PC with an Intel Pentium Core2Duo proces-

or at 2.2 gigahertz with 4 gigabyte of memory; the formulation

as solved using CPLEX 12.4 Concert Technology and the algo-

ithm was implemented in Java2 under Windows XP. In order to

ompare computational times in the fairest possible way, we have

mplemented formulation (NP) in our solver and solved the in-

tances with our computer. In Nossack and Pesch (2014a) , they

ere able to solve to optimality instances with up to 12 nodes

random weights) or 8 nodes (unit weights). With a limit time of

00 seconds, running instances with up to 32 nodes, we obtained

he results presented in Table 1 . Every row contains the averaged

esults of 240 instances. The given columns provide the number of

odes, optimal value, B , number of edges, optimal number of clus-

ers, time in seconds reported in Nossack and Pesch (2014a) , time

n seconds obtained with our computer and, for the sake of com-

leteness, number of instances that could be solved to optimality
Please cite this article as: M. Albareda-Sambola, A. Marín and A.M. Ro
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ith our computer in 300 seconds. Note that the computational

imes with the computer used in Nossack and Pesch (2014a) range

etween 1 and 3 times the computational times obtained with our

omputer. This ratio should be taken into account in the rest of the

omputational study, where the times are the original ones pre-

ented in Nossack and Pesch (2014a) . 

.1. Preliminary study 

In order to find a robust configuration of formulations (P) and

P’) we randomly generated two new sets of instances; one with

nit weights, and another one with random weights. To this end,

e initially chose three parameters: n, B and a probability p . Then,

e generate the weight for each node. In the first case, it is set to

, in the second case, it is drawn from the set { 1 , . . . , B } accord-

ng to the probability distribution P (i ) = K/i, i = 1 , . . . , B, where

 = 

(∑ B 
i =1 1 /i 

)−1 
. To generate the graph, each pair { i, j } with i < j

s taken in turn, and arc ( i, j ) is generated with probability p . Only
dríguez-Chía, Reformulated acyclic partitioning for rail-rail con- 
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Table 2 

Previous results of variants of formulation (P). 

Inequalities zLP BnB nodes Time(s) all # solved Time(s) solved 

None 268.21 83407.98 76.06 108 17.81 

(32) 268.21 63137.38 74.10 109 21.00 

(33) 268.21 72536.44 76.73 108 18.55 

(34) 156.27 5535.77 12.60 119 7.67 

(35) 217.93 16033.12 25.70 117 10.97 

(37) 255.55 52505.08 60.10 112 21.52 

(38) 268.21 59826.11 71.11 109 17.70 

(39) 266.65 10874.59 56.89 114 28.27 

(40) 265.22 9649.21 58.55 113 24.98 

(41) 250.30 2755.07 19.47 120 19.47 

(42) 251.85 3385.09 21.90 120 21.90 

(43) 268.21 87485.77 76.39 111 33.91 

(34) (35) 186.15 3057.28 10.47 120 10.47 

(32) (34) (35) 178.45 2130.57 5.96 120 5.96 

(33) (34) (35) 184.39 3037.88 8.95 120 8.95 

(34) (35) (37) 186.11 3364.60 10.54 120 10.54 

(34) (35) (43) 186.15 4579.06 9.19 120 9.19 

(34) (35) (38) 185.89 1737.30 6.94 120 6.94 

(32) (33) (34) (35) 177.64 1694.80 5.20 120 5.20 

(32) (33) (34) (35) (37) 177.63 2439.98 6.77 120 6.77 

(32) (33) (34) (35) (43) 177.64 2116.02 6.49 120 6.49 

(32) (33) (34) (35) (38) 177.60 1507.19 5.07 120 5.07 

(32) (33) (34) (35) (37) (43) 177.63 2311.25 6.60 120 6.60 

(32) (33) (34) (35) (37) (38) (43) 177.59 1293.42 4.71 120 4.71 
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arcs ( i, j ) with i < j are considered to ensure that the obtained

graph is acyclic. If, after considering all pairs { i, j } the graph is not

yet connected, new arcs linking different components are added at

random until the graph is connected. 

For this preliminary analysis, instances with n ∈ {15, 30}, B = 7

and probabilities p ∈ {0.3, 0.5, 0.7} have been generated. For each

combination, we generated 20 instances, 10 with unit weights, and

10 with random weights, giving a total of 120 instances. 

Table 2 shows the progressive results we obtained using differ-

ent sets of valid inequalities to formulation (P) on these instances.

Column zLP is the optimal value of the linear relaxation of the

instance, i.e., the upper bound on the optimal value provided by

(P) (the average optimal value is 156.27). The number of nodes of

the branching tree and the time in seconds needed to optimally

solve the instances are presented in the next two columns. Not

all the instances could be solved in the maximum allowed time

(fixed to 600 seconds). The number of solved instances is shown

in the next column, and the last column presents the time in sec-

onds required to solve the solved instances. When none of the

families of valid inequalities were added to (P), the average time

was 18 seconds for the solved instances, and 12 of them could not

be solved. The number of nodes more than 830 0 0 and the upper

bound 268.21. At the end of the study all the instances could be

solved, the time was reduced to 5 seconds, the number of nodes

to 1300 and the upper bound was 177.6. First, we compared the

effect of using each family of constraints separately. There were

two families of constraints, (34) and (35) , that were able to re-

duce the times and number of nodes, improving at the same time

the bounds. Then we combined these two families with others,

and continued combining families that were promising in terms of

times, nodes and/or bounds. The two combinations providing the

best average time are those given in the last row, and the third

row from the end of the table. For these two best combinations,

we also computed the median and the first and third quantile

of the solution times. For the combination { (32) (33) (34) (35) (38) }

these values (Q1/Me/Q3) were 0.10/0.60/4.75, while for the com-

bination { (32) (33) (34) (35) (37) (38) (43) } they were 0.18/0.60/5.20.

(The larger average value for the first of these two com-

binations is due to the large values of some outliers). The

above values, together with the fact that the first of the two

m  
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ombinations includes less constraints, has led us to choose com-

ination { (32) (33) (34) (35) (38) }. 

In the case of (P’), the results we obtained with this for-

ulation and different combinations of valid inequalities are de-

icted in Table 3 , which has the same structure as the previous

ne. Constraints (50) and (51) , a slight modification and an ex-

ension of constraints (34) and (35) , respectively, were again se-

ected as two of the three best options in the first stage of the

tudy. Afterwards, by adding other families of constraints, addi-

ional improvements were reached and the best choice was de-

ided to be the third row from the end, using constraints (48),

49), (50) and (51) . Again, this combination is not the one giv-

ng the smallest average time, but the small difference is com-

ensated by the fact that less inequalities need to be separated.

ow Q1 and Q3 were 0.10 and 1.23 for both combinations, and

hey only differed in the median, that was 0.40 for the third

ow from the bottom, and 0.30 for the second one from the

ottom. 

The overall average computing time was 1.81 seconds, below

he time required by (P) with the best combination of inequalities.

he average number of nodes in the search tree was 55, much less

han in the case of (P), although (P) took advantage of its reduced

ize. The average upper bound was 163, almost equal to the aver-

ge optimal value 156.27. 

.2. Complete study 

The results of applying formulations (P) and (P’) to all the

880 instances with random weights, using the best combination

f valid inequalities, are shown in Table 4 . Instances have been

rouped according to the number of nodes and compared with

he results obtained in Nossack and Pesch (2014a) using formu-

ation (NP) as well as their ad-hoc branch-and-bound algorithm

columns NPBB). There are 12 different sizes, ranging from 6 to 40

odes, and the averaged optimal value, capacity of the clusters and

umber of arcs ( m ) are shown in the first columns. Then, k indi-

ates the value obtained in Proposition 6.1 and k opt is the num-

er of clusters in the optimal solution. Under “UB” we summarize

he upper bounds obtained with different methods: The specific

ethod designed in Nossack and Pesch (2014a) , the linear relax-
dríguez-Chía, Reformulated acyclic partitioning for rail-rail con- 
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Table 3 

Results of variants of formulation (P’) on previous instances. 

Inequalities zLP BnB nodes Time(s) all # solved Time(s) solved 

None 247.90 32455.47 31.41 118 21.77 

(39) 246.80 4016.95 67.00 111 23.63 

(40) 246.33 5378.29 55.16 113 21.65 

(41) 241.06 1177.49 34.67 116 15.08 

(43) 247.90 18499.39 53.71 113 19.81 

(48) 247.90 10313.57 75.77 110 27.98 

(49) 247.90 19636.30 57.40 112 18.58 

(50) 186.51 1841.13 11.69 119 6.75 

(51) 219.60 1917.93 14.65 119 9.73 

(52) 237.18 20339.11 38.55 115 14.10 

(53) 247.90 26988.09 44.52 114 15.26 

(50) (51) 183.62 1079.27 4.11 120 4.11 

(48) (50) (51) 167.21 14 9.4 8 4.01 120 4.01 

(4 8) (4 9) (50) (51) 163.39 55.36 1.81 120 1.81 

(4 8) (4 9) (50) (51) (52) 163.39 55.36 1.78 120 1.78 

(43) (4 8) (4 9) (50) (51) (52) 163.39 37.41 1.85 120 1.85 

Table 4 

Results on instances with random weights. 

n OPT B m Clusters UB BnB nodes Times (s) Trimmed (s) 

k k opt NPBB (P) (P’) NPBB (P) (P’) (Pc) (P’c) (NP) NPBB (P) (P’) (Pc) (P’c) (P) (P’) 

6 29.25 3.0 11.7 5.6 4.8 29.3 29.3 29.3 1 1 1 1 1 0.19 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

8 39.45 3.0 19.1 7.5 6.3 39.6 39.6 39.6 1 1 1 1 1 0.46 0.02 0.00 0.00 0.00 0.00 0.00 0.00 

12 44.59 3.0 35.6 11.4 9.5 45.1 44.8 44.7 1 1 1 1 1 9.89 0.09 0.00 0.00 0.00 0.00 0.00 0.00 

16 58.91 3.0 53.4 15.3 12.5 59.6 59.4 59.3 2 1 1 1 1 − 0.37 0.01 0.01 0.01 0.03 0.01 0.01 

20 99.24 7.0 72.0 19.1 14.0 101.9 101.8 101.0 4 3 2 4 2 − 1.40 0.22 0.21 0.20 0.18 0.20 0.21 

24 115.82 7.0 90.4 22.9 16.8 119.7 119.6 118.4 7 29 4 24 3 − 2.79 0.54 0.55 0.52 0.45 0.52 0.54 

28 122.95 7.0 110.7 26.9 19.6 127.2 127.6 126.2 11 70 29 84 6 − 4.93 1.50 1.42 1.38 1.10 1.47 1.38 

30 132.15 7.0 120.4 28.8 20.9 137.4 138.0 136.1 17 640 154 271 9 − 6.84 2.64 2.27 1.99 1.52 2.44 2.18 

32 143.08 7.0 130.4 30.7 22.2 149.0 149.5 147.6 21 374 106 289 25 − 9.10 3.50 3.21 2.66 2.13 3.28 3.15 

34 151.23 7.0 140.8 32.9 23.6 157.3 158.4 156.1 20 772 228 601 29 − 11.14 5.63 4.78 4.00 2.79 4.97 4.58 

36 157.08 7.0 149.7 34.7 24.8 163.5 164.3 162.0 25 1135 234 874 25 − 14.83 7.74 6.13 5.13 3.61 7.19 5.94 

40 165.93 7.0 170.5 38.7 27.8 173.7 175.1 172.5 47 3733 1174 1942 200 − 29.20 22.46 14.47 12.22 7.34 18.50 13.46 
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tion of formulation (P) and the linear relaxation of formulation

P’). Under “BnB nodes” we specify the number of nodes of the

ifferent branch and bound algorithms. Computational times are

ompared in the following six columns, under “Times (s)”. Column

NP) refers to the best formulation known so far, that could be

sed in Nossack and Pesch (2014a) only to solve instances with up

o 12 nodes. Note that both formulations developed in this article,

P) and (P’), solve all the instances with low computational effort

ith only one exception: Among the 2880 instances, (P) required

ore than fifteen minutes to solve one of them (of size n = 40 ).

he maximum time in the case of (P’) was below four minutes.

ormulation (P’) is larger than formulation (P), but since it pro-

uces better upper bounds, the number of nodes in the search tree

s very small and this gives rise to the best computational results.

ven when compared with the ad-hoc algorithm (column NPBB

nder “Times (s)”) the results are very good. Recall that the NPBB

nd NP columns have been directly taken from Nossack and Pesch

2014a) . Since there were a few instances that we could classify as

utliers , the last columns of Table 4 (“Trimmed (s)”) show the aver-

ged times, removing the instance with largest computational time

or each value of n . 

Finally, we considered the separation of valid inequalities

36) in formulation (P), columns (Pc) of Table 4 . We still used in-

qualities (32), (33), (34) and (38) but removed (35) , since they

re part of family (36) . We also switched off the separation of

he solver own cuts. The average number of cuts per instance

as small. In the case of n = 40 this mean was 8. But this small

umber of cuts produced an average reduction of the number of

odes in the branching tree in all rows of the table. We observed
Please cite this article as: M. Albareda-Sambola, A. Marín and A.M. Ro
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hat the computational times improved considerably with the new

pproach. A deeper analysis led us to conclude that the cuts added

y the solver were slowing down the process. Although constraints

36) have no effect when constraints (51) are combined with the

est of valid inequalities in formulation (P’), and thus their separa-

ion has no sense in this case, we gave (P’) the opportunity of run

ithout the solver’s cuts, and named (P’c) the columns with the

orresponding results. Note that, in general, the number of nodes

f the search tree and the computational times dipped to a record

ow. 

The results with the best combination of inequalities over the

880 instances with unit weights are shown in Table 5 . 

In this case (NP) could be used in Nossack and Pesch

2014a) only to solve instances with up to 8 nodes and the ad-hoc 

ranch-and-bound algorithm could not solve instances with 32 to

0 nodes. In general, these instances were more difficult to solve,

nd all formulations produced worse upper bounds and needed

arger computational times. 

When we included the separation of valid inequalities (36) in

ormulation (P), the average number of cuts per instance in the

argest instances with n = 40 was 92, much larger than in the case

f random weights. Since we prevented the solver from using its

wn cuts, we incorporated again the most promising valid inequal-

ties. The effect was a significant reduction of the computational

imes. 

Regarding (P’), the bounds were again quite better but the com-

utational times were affected by several instances that required

any branching nodes and large computational times (in particu-

ar, four of them took more than 10 0 0 seconds). But the removal
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Table 5 

Results using unit weights. 

n OPT B m Clusters UB BnB nodes Times (s) 

k k opt NPBB (P) (P’) NPBB (P) (P’) (Pc) (P’c) (NP) NPBB (P) (P’) (Pc) (P’c) 

6 104.16 3.0 11.7 3.5 2.6 104.8 105.1 104.4 1 1 1 0.72 0.93 0.28 0.01 0.00 0.00 0.00 0.00 

8 127.08 3.0 19.1 4.0 3.3 127.5 128.2 127.2 1 1 1 0.93 0.96 0.91 0.02 0.00 0.00 0.00 0.00 

12 162.04 3.0 35.6 6.5 5.1 164.1 167.6 163.4 3 2 1 2.87 1.35 0.12 0.04 0.03 0.02 0.01 

16 196.21 3.0 53.4 9.0 6.7 198.9 205.1 198.1 5 10 1 14.19 1.83 0.52 0.25 0.17 0.09 0.07 

20 425.40 7.0 72.0 5.0 3.7 438.5 469.0 433.4 15 23 4 31.35 5.30 2.56 0.72 1.42 0.27 0.67 

24 477.67 7.0 90.4 6.0 4.0 492.8 540.4 488.2 33 130 9 171.73 16.03 6.45 1.68 3.65 0.59 1.54 

28 522.90 7.0 110.7 7.5 4.9 546.3 606.5 540.3 88 806 40 1022.75 51.27 21.82 4.79 11.20 1.80 4.58 

30 546.48 7.0 120.4 8.0 5.2 570.2 635.4 564.2 136 1378 53 1868.83 79.88 41.37 9.78 14.74 3.17 7.58 

32 575.78 7.0 130.4 8.0 5.5 − 673.4 595.8 − 1673 91 2270.63 129.85 − 10.31 20.62 3.87 9.05 

34 590.46 7.0 140.8 8.0 5.9 − 693.9 613.0 − 1858 87 2427.56 150.85 − 11.54 23.26 4.69 8.94 

36 617.88 7.0 149.7 9.5 6.3 − 737.1 644.4 − 9090 259 12384.84 422.60 − 60.98 44.81 22.59 17.85 

40 663.42 7.0 170.5 10.0 6.9 − 806.6 695.6 − 13985 262 18802.05 511.37 − 78.53 74.04 32.81 27.47 
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of the automatic cuts of the solver (column (P’c)) produced an im-

pressive decrease of the computational times and again this op-

tion dominated the others in terms of bounds, nodes and compu-

tational times. This can be observed both, in the case of random

weights and of unit weights. 

All in all, the combination of the new formulations, valid in-

equalities, preprocessing and cuts made it possible to efficiently

solve to optimality all instances generated in Nossack and Pesch

(2014a) , even those that were not solved before. 

Regarding the comparison of our results with NPBB, we could

observe in Table 1 that the cpu times required by our solver in

our computer are at most one third of those obtained in Nossack

and Pesch (2014a) . Now it can be observed in Tables 4 and 5 that

our times, for the instances that could be solved in Nossack and

Pesch (2014a) , are about one order of magnitude smaller in the

case of unit weights, and more than one third smaller in the in-

stances with random weights. 

During the experiments we observed that the addition of some

of the valid inequalities that were not selected in the previous

study also contributed to the reduction of bounds and times in the

case of the largest instances and they should not be left outside of

the resolution of real-life instances. 

9. Conclusions 

In this paper we have addressed the particular case of the train

scheduling problem arising at rail-rail transshipment yards when

trains are allowed to enter the loading area only once. As in previ-

ous works, we modeled this problem as an acyclic graph partition-

ing problem, for which we have presented two variants of a new

MIP formulation, based on a characterization of acyclic graphs. Ad-

ditionally, several properties of the problem and its solutions are

studied, which allow to derive several valid inequalities and vari-

able fixing rules. 

A thorough computational experience has been carried out on a

large set of instances taken from the literature that allowed first to

determine the best configuration of the formulation variants, and

later to show the capability of the resulting enhanced formulations

of solving instances much faster than in the previous approaches,

including a tailor-made branch and bound algorithm. Indeed, we

were able to solve to optimality instances that could not be solved

so far. 

Our computational results also confirm what was already ob-

served in previous works concerning the difficulty of the instances;

those with unit weights result much harder to solve than those

with nodes of different weights. 
Please cite this article as: M. Albareda-Sambola, A. Marín and A.M. Ro
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