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Many rail terminals have loading areas that are properly equipped to move containers between trains.
With the growing throughput of these terminals all the trains involved in a sequence of such movements
may not fit in the loading area simultaneously, and storage areas are needed to place containers waiting
for their destination train, although this storage increases the cost of the transshipment. This increases
the complexity of the planning decisions concerning these activities, since now trains need to be packed
in groups that fit in the loading area, in such a way that the number of containers moved to the storage

Keywords:
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Graph partitioning

area is minimized. Additionally, each train is only allowed to enter the loading area once.
Similarly to previous authors, we model this situation as an acyclic graph partitioning problem for
which we present a new formulation, and several valid inequalities based on its theoretical properties.

Our computational experiments show that the new formulation outperforms the previously existing ones,
providing results that improve even on the best exact algorithm designed so far for this problem.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Inland freight transportation is an increasing activity with a
high economical and environmental impact. Among the alterna-
tive transport modes, road transport has traditionally had a very
large share (for instance, according to Eurostat Statistics Explained,
2017 in 2014 it accounted for 74.9% of the total inland freight
transport -t-Km- within the EU). In order to increase its competi-
tiveness and to avoid the drawbacks of this activity such as conges-
tion and pollution, other transportation modes are encouraged by
the authorities (see, e.g., European Commission, 2011). In this re-
gard, rail transport (accounting already in 2014 for almost 20% of
the total inland freight transport in the European Union) is a rel-
evant alternative, and presents now an increasing trend. This de-
sirable increase in the rail freight transportation requires an adap-
tation of the infrastructures and involves increasingly complex de-
cisions from the managerial point of view. In particular, the new
challenges within the freight handling processes in railway yards
have originated a stream of literature on suitable optimization ap-
proaches and decision support systems. A recent survey on these
works can be found in Boysen, Fliedner, Jaehn, and Pesch (2013).

Among the surveyed problems, Boysen, Jaehn, and Pesch
(2011) consider the rail-rail transshipment system described next.
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In a given railway yard, a series of containers must be transshipped
among a number of trains. There is a loading area composed by a
series of parallel train tracks equipped with gantry cranes, and a
storage area. Each train has a given length and the tracks have a
limited capacity, so that not all trains can be within the loading
area at the same time, and a schedule must be designed where one
group of trains enters the loading area after the other. Each time,
containers are moved between trains within the loading area. If a
container has to be moved from one of those trains to another one
which is not there, it is placed in the storage area to wait until the
train that must carry it enters the loading area. Feasible schedules
are those associated with groups of trains that fit in the loading
area, where no train needs to enter this area more than once. The
goal is to find a feasible schedule that minimizes the number of
containers that need to be moved to and from the storage area
(see Fig. 1).

Already in Boysen et al. (2011) and later in Nossack and Pesch
(2014a), this situation was addressed through a graph partitioning
problem (GPP). In these problems, the nodes of a given graph must
be assigned to clusters in order to optimize an objective func-
tion. Different GPP variants arise when alternative conditions are
imposed on the number or the size of these clusters, or on the
structure of the graph they induce. Some of them are surveyed
in Alpert and Kahng (1995) and in the recent book in Parrochia
and Neuville (2013). GPPs are rather difficult to solve through in-
teger programming mainly due to the symmetries inherent to the
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Fig. 1. Rail-Rail transshipment yard representation.

solutions. Relevant heuristics based on greedy strategies have been
proposed for the case of bi-partitioning problems (e.g. Kernighan &
Lin, 1970 and Fiduccia & Mattheyses, 1982). Their procedures start
with a feasible solution and iteratively move to the best neighbor-
ing solution. Sanchis (1989) extended this idea to multi-way parti-
tioning.

A GPP variant closely related to this paper is the clique par-
titioning problem, where the nodes of an undirected graph must
be partitioned in order to maximize the total weight of the edges
within each cluster. Three relevant papers on this problem are
Grotschel and Wakabayashi (1989, 1990) and Oosten, Rutten, and
Spieksma (2001). In Oosten et al. (2001), the structure of the as-
sociated polytope is studied and a cutting plane algorithm is de-
veloped. Branch-and-bound algorithms are given in Dorndorf and
Pesch (1994) and Jaehn and Pesch (2013).

To model practical situations, additional constraints are often
required. For instance, the capacitated partitioning problem (CPP)
considers weights associated with the nodes and limits the to-
tal weight of the nodes in the same cluster. Also, the number
of clusters may be fixed. Holm and Serensen (1993) present a
branch-and-cut algorithm for this case, where cuts are added to
the formulation to avoid equivalent solutions. Branch-and-price
methods based on different formulations and ways of solving
the subproblems are implemented in Johnson, Mehrotra, and
Nemhauser (1993) and Mehrotra and Trick (1998). Ferreira, Martin,
de Souza, Weismantel, and Wolsey (1996) propose a multi-cut
formulation for the CPP which is solved in Ferreira, Martin,
de Souza, Weismantel, and Wolsey (1998) using branch-and-cut.
Ji and Mitchell (2007) solve a clique partitioning problem with
a minimum number of nodes in each clique with a branch-
and-price-and-cut algorithm. Benati, Puerto, and Rodriguez-Chia
(2017) also address a CPP with the additional constraint that the
nodes in the same clique must be connected with respect to a
secondary graph. Wong, Young, and Mak (2003) address the CPP
with a heuristic based on clustering. Recent studies on graph
partitioning problems are Bartolini, Casini, and Detti (2014) and
Miyauchi and Sukegawa (2015).

The directed graph used to model the above application has one
node associated with each train and arc (i, j) exists if and only if
a container must be moved from train i to train j. Thus, the graph
has weights associated with both, nodes and arcs. Nodes have to be
partitioned into clusters with the objective of maximizing the total
weight of the arcs within the clusters, but the total weight of the
nodes in the same cluster is bounded above, and the digraph in-
duced by the clusters cannot contain any circuit (otherwise, some
train would have to enter the loading area more than once). The
problem is consequently named acyclic partitioning problem (APP).
This is an NP-hard problem even if all (node and arc) weights are
equal to 1 (see Garey & Johnson, 1979). A heuristic method for the

APP is given in Cong, Li, and Bagrodia (1994). To the best of our
knowledge, the only exact methods for the APP are the pseudo-
polynomial time algorithm by Lukes (1974) for the particular case
defined on trees, and the works Nossack and Pesch (2014a,b) for
the general case. The last works present the first integer program-
ming formulation for the APP and develop an efficient branch-and-
bound algorithm for it. The contribution of our paper is a new for-
mulation able to solve much larger instances than before, based
on the study of several properties of the problem solutions. The
formulation is enforced with several families of valid inequalities.
Hovering over all this study the idea of avoiding equivalent, sym-
metric solutions is always present.

The rest of the paper is organized as follows. In Section 2 we
present in detail the problem we are considering in the paper. Sev-
eral properties of this problem are highlighted in Section 3. Re-
garding Integer Programming formulations, Section 4 is devoted to
the previously existing ones and 5 deals with the formulation pro-
posed in this paper. Although the new formulation is the result of
an elaborate process of refinement, still an exhaustive set of valid
inequalities for it has been devised and presented in Section 6.
We consider also an alternative, larger but tighter formulation in
Section 7. A complete computational study (Section 8) and some
conclusions (Section 9) close the paper.

2. The problem

In order to formally define the Acyclic Partitioning Problem
(APP), we consider a directed graph (digraph) G = (N, A) given by
a set of nodes N={1,..., n} and a set of arcs ACN x N. Without
loss of generality we assume that (i,i) ¢ A Vie N. Associated with
any node ieN there is a weight w; > 0, and associated with any
arc (i, j) €A there is a benefit ¢; > 0.

A partition of N is given by p nonempty clusters Nq,...,Np C
N such that ?_ Ns=Nand NsnN; =0 Vs £t e {1,..., p}. Given
B>0, a partition Ny,...,Np is called B-feasible (or simply a
B-partition) if ;.. w; <B Vse{1,..., p}. The value of partition
2 ={N1,...,Np} is defined as

p
U(g) = Z Z Cij.

s=1 (i,j)e(NsxNs)NA

% induces a digraph with nodes & and arcs {(Ns,
N¢):s#t,(Ns x N))NA#@}. To clearly distinguish G from this
induced digraph, G will be referred to as the initial digraph.

A circuit (directed cycle or simply cycle) in G is given by a se-
quence of different nodes (iy,...,ir) such that (ig,ig41) €A Vqe
{1,..., r—1} and (i, i;) € A. A digraph is acyclic if it does not con-
tain any directed cycle, and is cyclic otherwise.
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The APP is the problem of obtaining the B-feasible partition
of N of maximum value among those whose induced digraph is
acyclic.

We will assume throughout the remainder of this paper that all
weights w; and the constant B are integer valued.

3. Solution properties

In order to derive properties of the feasible solutions to the APP,
some additional definitions are required.

Two different nodes i, je N are said to be connected if a se-
quence (i; =1i,1iy,..., ir = J) exists such that {(ig, ig+1). (ig41.1g)} N
A+#9 ¥qe{l,...,r—1}. Connectivity is an equivalence relation-
ship whose classes are called connected components of G. When the
number of its connected components is 1, G is said to be connected.

Given the initial digraph (N, A), ie N is said to be a predecessor
of je N when there exists a sequence of nodes (i; = 1,1y, ..., ir =j)
such that (ig.ig41) € A Vg e {1,....,r—1}. It is also said that j is a
successor of i. To denote precedence relationships, we will use bi-
nary values o, defined for i, je N, taking value 1 only if i is a pre-
decessor of j. Note that these coefficients are easy to compute from
the adjacency matrix of graph G by means of a greedy procedure.

Proposition 3.1. If G is not connected and the APP is feasible, there
exists an optimal solution to the APP where the nodes of different con-
nected components are allocated to different clusters.

Proof. Let & ={N;,...,Np} be a feasible partition and assume
that, for some s € {1, ..., p}, Ns contains nodes from different con-
nected components of G. Then, Ny can be split into Ny = N} UNZ,
where N} contains all the nodes belonging to one of the con-
nected components, and N? contains those belonging to the others.
Consider the partition &' = (2 \ {Ns}) U{N{,N2}. 2’ is clearly B-
feasible since the sizes of the clusters in &’ are bounded by those
in 2.

Also, since the graph induced by £ is acyclic, any cycle in the
graph induced by 4’ should involve nodes N! and N2, but these
nodes cannot be connected in the graph induced by £’ since sets
N! and N? contain nodes belonging to different connected compo-
nents of the initial graph. Consequently, the graph induced by &’
is also acyclic.

The value of the partition £’ is exactly the same as the value
of &£, since no arcs exist connecting the two new clusters. Conse-
quently, v(2’') = v(2) and &’ is also optimal.

Iterating in this way until all nodes of different connected com-
ponents are allocated to different clusters, a new partition with
this property and the same value is obtained. O

Note that, according to this property, an optimal solution to the
APP for a general graph can be efficiently found by combining the
optimal partitions of its connected components. Taking advantage
of this fact, and without loss of generality, from now on we will
assume that the initial graph G is connected.

Observe now that a node ieN is at the same time a successor
and a predecessor of another node jeN, j#1i, if and only if there
exists a directed cycle in G containing i and j. Observe also that, in
this case, a partition of N such that ieNs and je N; with s#t will
necessarily induce a cyclic digraph. As a consequence, all nodes be-
longing to a directed cycle in (N, A) must be assigned to the same
cluster at any feasible solution to the APP. This fact makes it ad-
visable to preprocess the original graph, by shrinking each cycle
into one single node, as it was already done in Nossack and Pesch
(2014a). To be precise, given a cycle (i,...,ir), replace nodes
{i1,....ir} with one single node, n, with weight w, =>"{_; w;.
For each node ie N\ {ij,...,i;}, include the arc (i, n) (resp. (n,
i)) if and only if for some se {1,..., r}, (i, is) €A (resp. (is, i) €A).
The benefits of these arcs are computed as c;, =3 %16 and

Cpi = Y s_1 Ci;,i- From an optimal solution of the APP defined on
the resulting graph, an optimal solution to the original problem
instance can be built by including nodes {ij,...,i;} in the cluster
to which n has been assigned. The value of this partition will be
the value of the partition in the reduced graph plus the sum of the
values of the arcs with both endpoints in {i, ..., ir}.

This procedure can be repeated until no cycles are left in the
graph, making it acyclic. Thus from now on we will assume that
the initial graph G is both connected and acyclic. Under this as-
sumption it is easy to check whether an instance of the APP is
feasible. Indeed, a necessary and sufficient condition for feasibility
in this case is: w; <B VieN.

Example 3.1. To illustrate this transformation, we will use the ex-
ample depicted in Fig. 2, where node numbers are given inside
the circles representing them, node weights are given next to the
nodes and arc benefits are given close to the arcs. Observe that the
cycle (1,11,6) can be shrunk to a single node, n, with weight 5. In
turn, (1, 2) would also form a cycle that can be shrunk into a sin-
gle node, a, with weight 7, and the cycle (3,5,12,8) can be shrunk
into one node, b, with weight 9. In the right hand side of the fig-
ure, we display the resulting graph, where squares represent nodes
obtained by shrinking one or more cycles. In this case, node a rep-
resents nodes {1, 2, 6, 11} of the original graph, and node b rep-
resents nodes {3, 5, 8, 12}. Benefit c7,, for example, is obtained as
the sumc7; +¢c5=1+3=4.

It is well known that a digraph is acyclic if and only if it ad-
mits a topological order, i.e., a mapping o :N — N such that, for
any (i, j) €A, o(i) <o (j). Such a mapping is shown for the reduced
graph in Fig. 2, next to the nodes in boxed numbers. Indeed, by
suitably renaming the graph nodes, we can assume that i <j for
any (i, j) e A. This assumption will also be made in what follows.
Moreover, since the graph induced by any feasible solution must
also be acyclic, it must also admit a topological order. Based on
this idea, our formulation will index the clusters defining a topo-
logical order on the induced graph, so as to guarantee that it is
acyclic. These ideas can be further exploited using the concept of
successors of a node as shown in the next propositions. Here, we
denote with o~ the inverse mapping of mapping o.

Proposition 3.2. Let i<jeN such that o;; = 1. If nodes i and j are
assigned to the same cluster in a feasible partition, this cluster must
contain the whole set

Nis=f{eeli+1,...,j—1} o =1}

Proof. Leti<jeN witha;j=1and ¢ e N; and consider a partition
where i and j are assigned to cluster Ny and ¢ is assigned to cluster
N with t#s. Then, since o, = 1 and aj=1, N is both, a succes-
sor and a predecessor of Ns in the graph induced by the partition.
Therefore, this partition is infeasible. O

We next prove another property that will help avoiding equiva-
lent optimal APP solutions.

Proposition 3.3. For any feasible instance of APP there exists an op-
timal partition &2 and a topological order o 5 on the digraph induced
by 2 such that, for all t e {1,....|2| -1} with o3} (t) # ¢, and

o (t+1)£0,

> wi+ ) w>B

iea 5 (t) ieo 4 (t+1)

Proof. If the above condition does not hold for a given solution,
it is possible to build a new solution by merging the two clusters
03 (t) and o;; (t +1). The cluster obtained doing so will be B-
feasible, and no cycles will be formed. The value of the obtained
solution is at least as large as the value of the original one. O
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Fig. 2. Reduction of a cyclic graph.

Remark 3.1. Observe that the above proposition seems to contra-
dict Proposition 3.1, in the sense that, Proposition 3.1 might sug-
gest using more clusters than necessary and Proposition 3.3 tries
to use the smallest possible number of clusters. However, this is
not the case, since Proposition 3.3 assumes that the graph is con-
nected and then Proposition 3.1 is not applicable.

4. Previous formulations

Nossack and Pesch (2014a) developed the first IP formulation
for the APP. They considered auxiliary integer variables m¢, teN,
together with the following families of binary variables:

_ |1, if node i belongs to cluster N;, .
Xie = {0, otherwise, Vi.teN,
Zije = {(1) gtggfvsfsle,and j belong to cluster N, VicjeN teN
|1, if arc (N, N;) belongs to the induced digraph,
Vst = [0, otherwisse, Vs#teN
The model formulation, here named (NP), is given by
(NP) max Z Z (Ci]’ + Cji)zijs
seN l]eN
<]
st Y xg=1 VieN (1)
seN
> wixs < B VseN (2)
ieN
Z,‘J'SEX,'S VSEN,i<jEN (3)
Zijs = Xjs VSEN,i<jEN (4)

Xis +Xje — 1 <y V(@i,j)eA,s#teN (5)

s — T +nysg <n—1 Vs#teN (6)

Vse{2,...,n} (7)

ins = Z Xis—1

ieN ieN

VseNi<j<heN: jeN|
(8)

2Zins < Zijs + Zjns

Zins < Zijs VseNi<j<heN: jeN, (9)

Zijs + Zjns — Zips < 1 VseN,i<j<heN (10)
VseNi<j<heN (11)

Zijs — Zjns + Zins < 1

— Zijs + Zjps + Zips < 1 VseNi<j<heN (12)

xis € {0, 1} Vi,seN

yst €{0,1} Vs#teN

s el VseN

z;js € {0, 1} VseN, i<jeN.

Here, constraints (1) ensure that each node is assigned to a
cluster, constraints (2) limit the weight of the clusters, constraints
(3)-(4) ensure that two nodes belonging to different clusters do
not contribute the objective, constraints (5) set the right arcs for
the induced digraph. Circuits in the induced digraph are forbidden
with constraints (6), a version of the Miller-Tucker-Zemlin (MTZ)
constraints originally designed for the TSP (see Miller, Tucker, &
Zemlin, 1960).

The remaining constraints are either valid inequalities or op-
timality constraints, added to the model to avoid symmetric so-
lutions (it is the case of (7), that sort the clusters by their sizes)
and/or improve the upper bound provided by the LP-relaxation of
(NP). In particular, when nodes i and h are assigned to cluster s
(zins = 1) and another node j belongs to a directed path between i
and h, (8) forces j to belong to Ns as well. When i and j are in dif-
ferent clusters, (9) prevents the successors of j from belonging to
the same cluster as i. Finally, (10)-(12) are transitivity constraints
(see Grotschel & Wakabayashi, 1990).

In a different paper, Nossack and Pesch (2014b) presented two
other IP formulations for the APP. In the first one, the so-called
compact formulation, they replaced the above z variables by the ag-
gregated ones:

if nodes i and j belong to the same cluster,

1, .
Zij = [0, otherwise, Vi<jeN

The formulation is
(NPC) max Y ¢z
(i,j)eA
s.t. (1), (2), (5), (6)

Zjj + Xis — Xjs < 1 Vi<jeN seN (13)
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22, < zij + 21 Vi<j<heN: jeN,  (14)

Zip < Z;j Vi<j<heN: jeN (15)

Zij+Zjh_Zih§1 Vi<j<heN (16)
Zij_zjh+zih§1 Vi<j<heN (17)
—Zij+Zjp+2zip <1 Vi<j<heN (18)
x5 € {0,1} Vi,se N

Yst € {0, 1} Vs#teN

el VseN

z; € {0.1) VijeN, i<j.

Similarly to (3) and (4), constraints (13) ensure that two nodes
belonging to different clusters do not contribute the objective. Con-
straints (14)-(18) are valid inequalities analogous to (8)-(12).

The last formulation from Nossack and Pesch (2014b) considers
the set .77 of clusters S satisfying the following three conditions:
(i) the capacity constraint, (ii) if i, heS then N,i c S, and (iii) ieS,
j¢Sand jeN then h¢S. Also, they defined e5 = (ef,....e5) as
an incidence vector of a cluster S € ./, where ef =1 if node ieS
and O otherwise. The formulation considers the auxiliary integer
variables ¢, t € N, for each Se S,

Xe — 1, if cluster S belongs to the chosen partition,
S~ 0, otherwise,
and, for each S; #S, € 5,51 NS, =94,

_J1, if arc (51, S2) belongs to the induced digraph,
Ys152 =10, otherwise.

The so-called augmented set partitioning formulation is the follow-
ing.

(NPA) max ) csxs (19)
seS
sty exs=1 VieN (20)
Se.#

e,.S‘X51 +el.52x52 -1 <Ys;s, V(l, ]) €A, $1#£5 €7, 55NS5 =0

(21)
Ts, — s, +Nys,s, <n—1 VS1#S e, S1NS, =0
(22)
xs € {0, 1} VSe.s
¥ss, € {0.1) VS, £S5, €7, S{NSy =
el Vt e N,
where ¢ =Y jcaCijefe; VSe.#. The objective function

(19) maximizes the total benefit of the inter-cluster arcs, con-
straints (20) guarantee that each node belongs to one cluster,
(21) force y and x variables to take consistent values. Again, MTZ
constraints (22) forbid circuits in the induced digraph.

As already stated by the authors, the two last formula-
tions are rather unpractical. Specifically, (NPC) has a weak LP-
relaxation and exhibits awkward symmetries, and (NPA) contains
many constraints and variables. As a consequence, Nossack and
Pesch (2014b) does not present any computational study of these
formulations.

5. New formulation

In this section, we introduce a new formulation for the APP.
It uses solely x-variables as defined in formulation (NP) and the
subset of the z-variables from (NPC) {z; : (i, j) € A} (note that this
implies i <j). Additionally, for each pair i<jeN with o;; =1, we
define Aj; as:

Ajj =W;+Ww;+ ZW€~
£eNi
]
Note that any cluster containing both, i and j, will have a total node

weight of, at least, A;. The proposed formulation, denoted by (P),
is

(P) max Z CijZij (23)
(i,j)eA
sty Xs=1 VieN (24)
seK

> wixg <B VseK (25)
ieN

Y X+ Y xp<1 Vi<jeN: ay=1, Aj<B VYseK (26)
t>s t<s

X+ Y xp<1 Vi<jeN: ay=1, Aj>B VseK (27)
t>s t<s

V(@i j) €A, VsekK (28)

Zij JFint +ij[ <2

t<s t>s
X € {0,1} VieN, VseK
zij € {0, 1} V(i j) €A
Here, indices corresponding to the potential clusters are defined
on the set K = {1,...,k}, where k is an upper bound on the num-

ber of clusters in the optimal APP solution. In forthcoming sections
we will discuss how to obtain its value. Observe that a possible
value for k is n, but, obviously, by obtaining smaller k values we
can reduce the size of formulation (P).

The objective function (23) measures the total benefit obtained
from the arcs with both extremes in the same cluster. Each node
must be assigned to one cluster, and this is guaranteed by con-
straints (24). The total weight of the nodes assigned to any cluster
cannot exceed the bound B, as stated by constraints (25). The in-
duced digraph cannot contain circuits, which is achieved by topo-
logically ordering the clusters. Therefore, if «;; = 1 for i, je N, node
i cannot belong to a cluster with a higher index than the cluster
of node j. That is, for a given s value, if node j belongs to one
of the first s —1 clusters, i cannot belong to cluster s nor to one
with a higher index. If this happens the left hand side of the cor-
responding constraint (26) will take value 2. When i and j cannot
be allocated to the same cluster because A; > B, index s can be also
included in the second summation as stated by constraints (27).

In order to guarantee that the z-variables in the objective func-
tion reflect the allocation structure given by the x-variables, we use
constraints (28). Here, given (i, j) €A, if j is allocated to a cluster in
position s or later, and i is allocated to a cluster in a position before
s, they cannot be in the same cluster. The corresponding constraint
(28) sets z;; to zero.

Observe that, given the shape of the objective function and con-
straints (28), the integrality constraints on the z-variables can be
relaxed. Indeed, since the problem consists in maximizing the sum
of the benefits ¢;(>0) times the corresponding z-variables, then
z-variables will take the largest possible value. In addition, using
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(28), if i and j are in the same cluster Y, _ X; + Y . X = 1 for all
sek, then z; will take value 1; otherwise, we can find sy € K such
that 37, ¢ Xit + 2 t=s, Xt = 2 and then z;; = 0.

6. Formulation improvements
6.1. Preprocessing

Formulation (P) can be preprocessed by fixing some z-variables
and x-variables to 0.

First, by Proposition 3.2 we can forbid beforehand that some
pairs of nodes belong to the same cluster. Using the previously
computed values A; we can fix

V(i j)eA: Aj > B. (29)

Second, consider a node i and the set of its successors, S;. Con-
sidering the total weight of these successors plus the weight of i,
W =w;+ 3 s, Wj. it is clear that there is a number of clusters, at
the end of the topologically ordered list, where i cannot be allo-
cated. Indeed, if i were assigned to cluster s and the total capac-
ity of clusters s, ..., k (which is equal to (k—s+ 1)B) is less than
W, the remaining nodes could not be correctly allocated. A similar
reasoning can be made for the set of predecessors of i, P;. Accord-
ingly,

Z,‘j:O

Xs=0 VieN seK: (k—s+1)B<wi+) wj (30)
JeSi
Xs=0 VieN, seK: sB<wi+) w; (31)
Jjeh

6.2. Valid inequalities

In this section we derive several valid inequalities for formula-
tion (P). First we consider those previously used in the literature,
i.e., in formulation (NPC).

Transitivity constraints (16), (17) and (18) can be incorporated
to formulation (P) but need to be adapted in order to include
only well-defined variables, ie., Vi< j<¢eN: (i,j), (i,£), (j,¢) e
A, Aij’AM*Ajl < B:

Zip > zij+ 25— 1

Zij > Zjp +ng—l (32)
Zjp > zij+zy — 1

The meaning of these constraints is clear: Whenever a node i
shares a cluster with two other nodes, j and ¢, the latter two nodes
must also share that cluster.

According to the variable definitions and Proposition 3.2, the
following inequalities are also valid:
ziy<zj Vi<j<teN: (i), (1¢) €A, Aj Ay <B, jeN}' } (33)
Zi<zjy Vi<j<teN: (i,0),(j,¢) €A, Ay Ajy<B, jeN |
Note that (33) are tighter than the related constraints (14) and (15),
since (14) is obtained as the sum of both constraints in (33). The
ideas behind these sets of constraints were also used for formula-
tion (NPC), although they were not stated exactly in the same way.
To the best of our knowledge, the valid inequalities that follow are
presented in this work for the first time.

When three nodes, i<j<¢, are allocated to the same cluster,
any other node in the directed paths between them must belong
to this cluster. Then, the total weight of that cluster is bounded
below by

Aljy = Wi+ Wj+w, + > w
heN;:uN{ UNI\{j}

So, if Al’,ﬂ > B, the three nodes cannot share a cluster. Taking into
account the transitivity, at most one of the variables z;;, z;, and z;,

can take value one. Therefore, for all i <j <¢ e N such that A
the following are valid inequalities for (P):

B,

!
ije =

Zij+zjp+zig <1 (1,)), (1 0),(J,0) €A, Aij, Ay, Ajy <B

zij+zy <1 (i, )). (i, 0) €A, Ajj, A <B, but (j, £) A and/or Aj, > B
Zip+2zj, < 1 (i,0),(j.t) €A, Ay, Aj, <B, but (i, j) ¢ A and/or A;; > B
zij+2zj, <1 (i, ), (j.©) € A, Aij,Aj, <B, but (i, £) ¢ A and/or A;, > B.

(34)

Capacity constraints (25) depend only on the x-variables. They
cannot be stated using z-variables since z; is not defined if (i, j) ¢
A. Nevertheless, valid inequalities in the same spirit are:

wj+ (w; + ZheNj Wh)zij + (We + ZhEN{ Wi)Zje + ZI&%LA WhZpj

F Y Wazjn + XN Wazn + 250 wazjy < B (35)
e iy s

Vi<j<teN: (ij) (j.0) €A

Given (i, j), (j, £) €A, the left hand side of the above inequality
provides a lower bound on the sum of the weights of the nodes in-
cluded in the same cluster as j. Indeed, the first term is the weight
of node j, the second (third) addend accounts for the weights of
the nodes in any path from i to j (from j to ¢), excluding j because
this weight is already included in the first term, whenever i and j
(j and ¢) are in the same cluster (Proposition 3.2). The fourth (fifth)
addend is the sum of weights of the nodes, such that,: (i) have in-
dices smaller than i (bigger than ¢), (ii) are in the same cluster as j,
and (iii) are linked by an arc with j (this third condition guarantees
that these nodes have not been already included in the previous
two addends because we are assuming the graph is topologically
ordered). The sixth (seventh) addend gives the sum of weights of
the nodes belonging to same cluster as j with indices between i
and j (j and ¢), linked to j by an arc but not belonging to any path
between i and j (j and ¢); this guarantees that these nodes have
not been already included in the previous addends.

Taking advantage of the fact that if two extreme points of a
path belong to the same cluster, then the full path is also con-
tained in that cluster, additional capacity constraints can be stated
as follows:

i-1 n
wit | 2w )zii+ D | Dowe )z <B (36)

J=1: tel; J=i+1: \ LeR;
(J.)eA (i.j)eA

for all ieN, any family of sets L; satisfying

Ly C{jyUN/. Ly L, =0Vji # ja.

and any family of sets R; satisfying

Ri C{j}UNI, R NR;, =% Vji # jo,

Note that there can be empty sets L; and/or R;.

To separate this family of constraints we proceed as follows. Let
(x,Z) be the optimal solution to the linear problem. Then, for each
ieN, let

I ={ee{jluN: z;= mpax{fpi : pePl}}
where ties are broken in lexicographical order. Similarly, let
Rj={te{jJuNi: z;= mgx{ifp : peSt).

Given a tolerance T, if

i-1 n
w; + Z ZW@ ijj“r Z ZW({ Z_','j >B+T,
J

=1: I3 J=i+1: R
(ibea \‘eLi Ghen \UeR
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then the corresponding violated inequality is added to the formu-
lation.

Constraints (28) ensure that z-variables take value 0 when re-
quired. These constraints can be extended to the following family
of valid inequalities:

Zij+Zic+ ) (e +Xe) + Y Xir <3

t=s t<s
Vi<j<teN: (i,j), (i) €A Aj A, <B aj=0,
Ay, > B, Vs eK. (37)

When (i, j) €A, constraints (26) can be extended to the follow-
ing set of valid inequalities:

int +ZX]-[ S 1 +Zij

t>s t<s

V(i j) €A, Aj<B, VseKk. (38)

Recall that formulation (P) uses an upper bound k on the num-
ber of clusters of the optimal partition. Therefore, the number
of actual (nonempty) clusters in the obtained solution might be
smaller than k. In this case, formulation (P) would leave some
empty dummy clusters. These empty clusters introduce an awk-
ward symmetry, since, according to (P), they can occupy arbitrary
positions in the list {1,..., k}. In order to break those symmetries,
the following additional constraints can be added to force that the
actual clusters have the lowest indices, and the empty ones, if any,
are grouped at the end of the list:

ZWinr p BZX,'S Vs <t <k, (39)
ieN ieN

szit <(n-s) Zx,-s Vs < k. (40)
ieN t>s ieN

Constraints (39) are based on node weights. If cluster s is empty,
the right-hand side of (39) will be 0, forcing the clusters with
greater indices to be empty as well; otherwise B is used to bound
the right-hand side. Instead, (40) are based on the number of
nodes. A zero value in the sum of the right-hand side will push all
variables in the left-hand side, which correspond to clusters with
a larger index, down to 0. In this case the left hand side contains
more variables and the upper bound when the right-hand side is
not zero is given by the maximum number of nodes that can be
allocated to the last n —s clusters. In the worst case this number
isn—s.

The following
Proposition 3.3.

valid inequalities also follow from

k

> wilkis +Xisp1) = (B+1) Y X Vs<k-2, VjeN, (41)

ieN\{j} t=s+2
o
D Wi+ Y WiXig+ Y WiXis = B+1)) X
i<j i>f0 ieN t>s
el
Vs <k, VjeN (42)

We next explain the rationale behind valid inequalities (41); simi-
lar arguments can be used to show that inequalities (42) are valid.
The idea behind (41) is the following: given s < k — 2 if there is a
nonempty cluster with index greater than s+ 1 (left hand side of
(41) equal to (B + 1)), then the sum of the weights associated with
the nodes in cluster s and s + 1 should be at least B+ 1, otherwise
it would contradict Proposition 3.3.
An additional family of valid inequalities is

insfl

ieN:
w;=B/2

Vs e K. (43)

6.3. Bounding the number of clusters

Observe that if the maximum number of clusters to be used (k)
is small, the dimension of formulation (P) is drastically reduced.
Therefore, the problem will be solved much easily if a small value
of k is available, instead of the trivial bound on the number of
clusters, n. However, it would be a wrong approach to solve the
APP using any value k and then accepting the optimal solution
in case of feasibility. Although this approach is correctly adopted
for other problems with similar clusters structure, like the search
of the chromatic number of a graph (Nobibon, Hurkens, Leus, and
Spieksma, 2010, 2012), in our case feasibility does not guarantee
optimality, as we show in the example illustrated in Fig. 3 where
w; =1 Vi, B=3 and the benefits of the arcs are depicted next to
them. Taking a value of k = 8, the optimal solution to this instance
is given in Fig. 4 with optimal value 15.6. This solution only uses 6
out of the 8 possible clusters. Nevertheless, the actual optimal APP
solution, with value 16, requires 9 clusters (see Fig. 5). The result
given in Proposition 6.1 has been used to fix the value of k in our
formulations:

Proposition 6.1. An optimal partition & to APP exists, satisfying

Lien Wi
|2 | < min HZLZiENWiJ+ ZiENWi_(B+])L%J

B+1 B
(44)
Proof. It suffices to show
i — (B+ 1) Hgt |
W € B+1
|2 | EZ{ZBIEJerlJ + 5 ) (45)

By Proposition 3.3, the total weight of any pair of non-empty con-
secutive clusters can be assumed to be at least equal to B+ 1
(taking into account that all weights and B are integer num-
bers). Assuming that this lower bound is tight, the first addend of
(45) keeps track of the filled couples of clusters. The numerator of
the second addend stands for the remaining weight. If this rest,
which is less than or equal to B, is not zero, an additional cluster
must be added to the account. O

7. Alternative formulation

It became evident during the development of valid inequalities
that those based on z-variables could be reinforced by including in
the formulation additional z;-variables with i<jeN and (i, j) ¢ A.
At the expenses of having a larger formulation, there is a chance of
obtaining better upper bounds, since the new constraints will be
tighter on the z-variables in the objective function (23). To check
if this alternative gives rise to better computational results, a new
formulation (P’) is considered:

(P') max Z CijZij (46)
(i,j)eA
s.t. (24),(25),(26),(27)

Zij +int +ijt <2

Vi<jeN, Vsek

t<s t>s
X € {0, 1} VieN, VseK
Zjj € {0, 1} Vi < ] eN. (47)

The preprocessing phase developed in Section 6.1 is still valid for
this formulation. In addition, similarly to formulation (P), the bina-
rity constraints on the z-variables could be dropped from (P’). From
the range of valid inequalities developed for formulation (P), those
containing only x-variables remain the same for (P’): (39)-(43).
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Fig. 4. Solution of the instance from Fig. 3 with k = 8.

Some other valid inequalities need to be modified in order to
include the additional z-variables in (P’). Constraints (32), (33) and
(34) are replaced, respectively, by:

Zip > zjj+ 2j — 1

Zij 2 Zjg +Zj£—l Vl'<j<f€N: A,’j,Aw,AﬂfB, (48)
Zjy > zjj+ 2z — 1

Zip = Zijj Vi<j<Z€N:Ai]',A,'[§B,j€N2 (49)
Zig = Zjg Vl.<j<€€N: AinAjéva jENl’,

Zij+Zj +Ziy < 1 Vi < ] <leN: AijsAilvAjk <B, A;]Z > B,
Z,'j-i-Zl'gSl Vi<j<teN: Ajj,AiggBandAjg>B
Z,‘[+Z]‘g§1 Vl.<j<f€N: AilsAjl §BandA,»j>B
Z,'j-i-Zj@f] Vi<j<teN: A,’j,AngBand Ay > B,

(50)

Note that constraints (35) and (36) used the capacity of the clus-
ters to limit the values of the z-variables. Formulation (P’) allows

to extend and simplify these constraints in the following way:
i-1 n

w; + ZWJ'Z]‘,' + Z W;zi; < B
= j=it1

VieN. (51)

In addition, constraints (37) and (38) of (P) are replaced by the
following ones:

Zij + Zig + Z(th +Xet) + int <3

t>s t<s

Vi<j<€€N: otj[=0, Aiijil <B, A;ﬂ > B, VseK, (52)

DX+ Y xp <14z

t>s t<s

Vi<jeN, Aj<B. Vsek. (53)

8. Computational study

In order to evaluate the performance of the new formulations
and valid inequalities, a computational study has been carried out
using the unique data set in the literature, presented in Nossack
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Fig. 5. Optimal solution of the instance from Fig. 3.

and Pesch (2014a). This set contains a total of 5760 instances, with
integer data, and a number of trains (nodes) ranging between 6
and 40. The number of tracks, which gives the cluster capacity B,
takes values {2, 4} for instances with no more than 16 trains, and
values {6, 8} for the larger ones. Instances are grouped into two
main classes according to the node weights distribution. In the first
class, node weights w; are randomly taken from {1, ..., B}, while
in the second class all weights are equal to 1 (each train uses one
track).

The solver used in the study was FICO Xpress Mosel 64-bit
v4.8.2 under operating system Ubuntu 16.04 LT. The computer
was an Intel Xeon(R) CPU E5-2623 v3, 3.00 gigahertz with 16 gi-
gabyte of memory. Unless stated otherwise, default values were
used for all but one of the parameters of Xpress. The only mod-
ification was to discard nodes of the branching tree when the
difference between their upper bound and the incumbent was
at most 0.99, since the optimal values of our instances are al-
ways integer. Although the binarity of the z-variables is guar-
anteed at any optimal solution to formulations (P) and (P’), we
included the corresponding constraints in the formulation since
the solver seemed to perform better this way. The results from
Section 6.1 were applied to all instances to fix to zero some x- and
z-variables.

We aim to compare our results with those obtained in Nossack
and Pesch (2014a) using both, formulation (NP) and a customized
branch-and-bound algorithm. The results reported in that paper
were obtained on a PC with an Intel Pentium Core2Duo proces-
sor at 2.2 gigahertz with 4 gigabyte of memory; the formulation
was solved using CPLEX 12.4 Concert Technology and the algo-
rithm was implemented in Java2 under Windows XP. In order to
compare computational times in the fairest possible way, we have
implemented formulation (NP) in our solver and solved the in-
stances with our computer. In Nossack and Pesch (2014a), they
were able to solve to optimality instances with up to 12 nodes
(random weights) or 8 nodes (unit weights). With a limit time of
300 seconds, running instances with up to 32 nodes, we obtained
the results presented in Table 1. Every row contains the averaged
results of 240 instances. The given columns provide the number of
nodes, optimal value, B, number of edges, optimal number of clus-
ters, time in seconds reported in Nossack and Pesch (2014a), time
in seconds obtained with our computer and, for the sake of com-
pleteness, number of instances that could be solved to optimality

Table 1
Comparing times of formulation (NP) in different computers.
n OPT B m Clusters  Times (s) Solved
Kopt Theirs Ours QOurs
Unit weights
6 104.16 3.0 117 2.6 0.28 0.09 240
8 127.08 3.0 191 33 0.91 0.40 240
12 16204 3.0 356 5.1 - 6.51 240
16 196.21 3.0 534 6.7 - - 189
20 42540 70 720 3.7 - - 77
24 47767 70 904 4.0 - - 3
28 52290 70 1107 49 - - 0
30 54648 70 1204 52 - - 0
32 57578 70 1304 5.5 - - 0
Random weights
6 29.25 3.0 117 4.8 0.19 0.10 240
8 39.45 3.0 191 6.3 0.46 0.61 240
12 4459 3.0 356 9.5 9.89 3.83 240
16 5891 30 534 12.5 - - 233
20 99.24 70 720 14.0 - - 77
24 115.82 70 904 16.8 - - 97
28 12295 70 110.7 19.6 - - 26
30 13215 70 1204 209 - - 16
32 143.08 70 1304 222 - - 6

with our computer in 300 seconds. Note that the computational
times with the computer used in Nossack and Pesch (2014a) range
between 1 and 3 times the computational times obtained with our
computer. This ratio should be taken into account in the rest of the
computational study, where the times are the original ones pre-
sented in Nossack and Pesch (2014a).

8.1. Preliminary study

In order to find a robust configuration of formulations (P) and
(P’) we randomly generated two new sets of instances; one with
unit weights, and another one with random weights. To this end,
we initially chose three parameters: n, B and a probability p. Then,
we generate the weight for each node. In the first case, it is set to
1, in the second case, it is drawn from the set {1,..., B} accord-
ing to the probability distribution P(i) = K/i,i=1,...,B, where
K= (ZL 1/1')71. To generate the graph, each pair {i, j} with i<j
is taken in turn, and arc (i, j) is generated with probability p. Only
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Table 2

Previous results of variants of formulation (P).

Inequalities zLP BnB nodes  Time(s) all  # solved  Time(s) solved
None 268.21 83407.98 76.06 108 17.81
(32) 268.21 63137.38 74.10 109 21.00
(33) 268.21 72536.44 76.73 108 18.55
(34) 156.27 5535.77 12.60 119 7.67
(35) 217.93 16033.12 25.70 117 10.97
(37) 255.55  52505.08 60.10 112 21.52
(38) 268.21 59826.11 7111 109 17.70
(39) 266.65  10874.59 56.89 114 28.27
(40) 26522 9649.21 58.55 113 24.98
(41) 250.30 2755.07 19.47 120 19.47
(42) 251.85 3385.09 21.90 120 21.90
(43) 268.21 87485.77 76.39 111 33.91
(34)(35) 186.15 3057.28 10.47 120 10.47
(32)(34)(35) 178.45 2130.57 5.96 120 5.96
(33)(34)(35) 184.39  3037.88 8.95 120 8.95
(34)(35)(37) 186.11 3364.60 10.54 120 10.54
(34)(35)(43) 186.15 4579.06 9.19 120 9.19
(34)(35)(38) 185.89 173730 6.94 120 6.94
(32)(33)(34)(35) 177.64 1694.80 5.20 120 5.20
(32)(33)(34)(35)(37) 177.63 2439.98 6.77 120 6.77
(32)(33)(34)(35)(43) 177.64 2116.02 6.49 120 6.49
(32)(33)(34)(35)(38) 17760  1507.19 5.07 120 5.07
(32)(33)(34)(35)(37)(43) 177.63 2311.25 6.60 120 6.60
(32)(33)(34)(35)(37)(38)(43) 17759 1293.42 4.71 120 4.71

[m5G;February 26, 2019;0:23]

arcs (i, j) with i<j are considered to ensure that the obtained
graph is acyclic. If, after considering all pairs {i, j} the graph is not
yet connected, new arcs linking different components are added at
random until the graph is connected.

For this preliminary analysis, instances with ne{15, 30}, B=7
and probabilities p €{0.3, 0.5, 0.7} have been generated. For each
combination, we generated 20 instances, 10 with unit weights, and
10 with random weights, giving a total of 120 instances.

Table 2 shows the progressive results we obtained using differ-
ent sets of valid inequalities to formulation (P) on these instances.
Column zLP is the optimal value of the linear relaxation of the
instance, i.e., the upper bound on the optimal value provided by
(P) (the average optimal value is 156.27). The number of nodes of
the branching tree and the time in seconds needed to optimally
solve the instances are presented in the next two columns. Not
all the instances could be solved in the maximum allowed time
(fixed to 600 seconds). The number of solved instances is shown
in the next column, and the last column presents the time in sec-
onds required to solve the solved instances. When none of the
families of valid inequalities were added to (P), the average time
was 18 seconds for the solved instances, and 12 of them could not
be solved. The number of nodes more than 83000 and the upper
bound 268.21. At the end of the study all the instances could be
solved, the time was reduced to 5 seconds, the number of nodes
to 1300 and the upper bound was 177.6. First, we compared the
effect of using each family of constraints separately. There were
two families of constraints, (34) and (35), that were able to re-
duce the times and number of nodes, improving at the same time
the bounds. Then we combined these two families with others,
and continued combining families that were promising in terms of
times, nodes and/or bounds. The two combinations providing the
best average time are those given in the last row, and the third
row from the end of the table. For these two best combinations,
we also computed the median and the first and third quantile
of the solution times. For the combination {(32)(33)(34)(35)(38)}
these values (Q1/Me/Q3) were 0.10/0.60/4.75, while for the com-
bination {(32)(33)(34)(35)(37)(38)(43)} they were 0.18/0.60/5.20.
(The larger average value for the first of these two com-
binations is due to the large values of some outliers). The
above values, together with the fact that the first of the two

combinations includes less constraints, has led us to choose com-
bination {(32)(33)(34)(35)(38)}.

In the case of (P’), the results we obtained with this for-
mulation and different combinations of valid inequalities are de-
picted in Table 3, which has the same structure as the previous
one. Constraints (50) and (51), a slight modification and an ex-
tension of constraints (34) and (35), respectively, were again se-
lected as two of the three best options in the first stage of the
study. Afterwards, by adding other families of constraints, addi-
tional improvements were reached and the best choice was de-
cided to be the third row from the end, using constraints (48),
(49), (50) and (51). Again, this combination is not the one giv-
ing the smallest average time, but the small difference is com-
pensated by the fact that less inequalities need to be separated.
Now Q1 and Q3 were 0.10 and 1.23 for both combinations, and
they only differed in the median, that was 0.40 for the third
row from the bottom, and 0.30 for the second one from the
bottom.

The overall average computing time was 1.81 seconds, below
the time required by (P) with the best combination of inequalities.
The average number of nodes in the search tree was 55, much less
than in the case of (P), although (P) took advantage of its reduced
size. The average upper bound was 163, almost equal to the aver-
age optimal value 156.27.

8.2. Complete study

The results of applying formulations (P) and (P’) to all the
2880 instances with random weights, using the best combination
of valid inequalities, are shown in Table 4. Instances have been
grouped according to the number of nodes and compared with
the results obtained in Nossack and Pesch (2014a) using formu-
lation (NP) as well as their ad-hoc branch-and-bound algorithm
(columns NPBB). There are 12 different sizes, ranging from 6 to 40
nodes, and the averaged optimal value, capacity of the clusters and
number of arcs (m) are shown in the first columns. Then, k indi-
cates the value obtained in Proposition 6.1 and kep is the num-
ber of clusters in the optimal solution. Under “UB” we summarize
the upper bounds obtained with different methods: The specific
method designed in Nossack and Pesch (2014a), the linear relax-
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Table 3

Results of variants of formulation (P’) on previous instances.

Inequalities zLP BnB nodes  Time(s) all  # solved  Time(s) solved

None 24790  32455.47 31.41 118 21.77

(39) 246.80  4016.95 67.00 m 23.63

(40) 24633  5378.29 55.16 113 21.65

(41) 241.06 1177.49 34.67 116 15.08

(43) 247.90 18499.39 53.71 113 19.81

(48) 24790 10313.57 75.77 110 2798

(49) 24790 19636.30 5740 112 18.58

(50) 186.51 1841.13 11.69 119 6.75

(51) 219.60  1917.93 14.65 119 9.73

(52) 23718 20339.11 38.55 115 14.10

(53) 24790  26988.09 44.52 114 15.26

(50)(51) 183.62  1079.27 411 120 411

(48)(50)(51) 167.21 149.48 4.01 120 4.01

(48)(49)(50)(51) 16339 5536 1.81 120 1.81

(48)(49)(50)(51)(52) 16339  55.36 1.78 120 1.78

(43)(48)(49)(50)(51)(52) 16339 3741 1.85 120 1.85
Table 4
Results on instances with random weights.
n OPT B m Clusters UB BnB nodes Times (s) Trimmed (s)

k kopt ~ NPBB  (P) (P NPBB  (P) (P) (Pc) (Pc) (NP) NPBB (P) (P) (Pc) (Pc) (P) (P)

6 2925 3.0 117 56 48 293 293 293 1 1 1 1 1 019 0.01 000 000 0.00 000 000 0.00
8 3945 3.0 191 75 6.3 396 396 396 1 1 1 1 1 046 0.02 000 000 000 000 0.00 000
12 4459 30 356 114 95 451 448 447 1 1 1 1 1 989 0.09 000 000 000 000 0.0 0.00
16 5891 30 534 153 125 596 594 593 2 1 1 1 1 - 0.37 0.01 0.01 0.01 0.03 0.01 0.01
20 9924 70 720 191 140 1019 101.8 101.0 4 3 2 4 2 - 140 022 021 020 018 020 0.21
24 11582 70 904 229 168 119.7 1196 1184 7 29 4 24 3 - 279 054 055 052 045 052 054
28 12295 70 1107 269 196 1272 1276 1262 11 70 29 84 6 - 4.93 1.50 142 1.38 110 147 1.38
30 13215 70 1204 288 209 1374 1380 1361 17 640 154 271 9 - 6.84 264 227 199 152 244 218
32 143.08 70 1304 307 222 149.0 1495 1476 21 374 106 289 25 - 9.10 350 321 266 213 328 315
34 15123 70 1408 329 236 1573 1584 1561 20 772 228 601 29 - 1114 563 478 400 279 497 458
36 15708 70 1497 347 248 1635 1643 162.0 25 1135 234 874 25 - 14.83 774 6.13 513 361 719 5.94
40 16593 70 1705 387 278 1737 1751 1725 47 3733 1174 1942 200 - 2920 2246 1447 1222 734 1850 13.46

ation of formulation (P) and the linear relaxation of formulation
(P’). Under “BnB nodes” we specify the number of nodes of the
different branch and bound algorithms. Computational times are
compared in the following six columns, under “Times (s)”. Column
(NP) refers to the best formulation known so far, that could be
used in Nossack and Pesch (2014a) only to solve instances with up
to 12 nodes. Note that both formulations developed in this article,
(P) and (P’), solve all the instances with low computational effort
with only one exception: Among the 2880 instances, (P) required
more than fifteen minutes to solve one of them (of size n = 40).
The maximum time in the case of (P’) was below four minutes.
Formulation (P’) is larger than formulation (P), but since it pro-
duces better upper bounds, the number of nodes in the search tree
is very small and this gives rise to the best computational results.
Even when compared with the ad-hoc algorithm (column NPBB
under “Times (s)”) the results are very good. Recall that the NPBB
and NP columns have been directly taken from Nossack and Pesch
(2014a). Since there were a few instances that we could classify as
outliers, the last columns of Table 4 (“Trimmed (s)”) show the aver-
aged times, removing the instance with largest computational time
for each value of n.

Finally, we considered the separation of valid inequalities
(36) in formulation (P), columns (Pc) of Table 4. We still used in-
equalities (32), (33), (34) and (38) but removed (35), since they
are part of family (36). We also switched off the separation of
the solver own cuts. The average number of cuts per instance
was small. In the case of n =40 this mean was 8. But this small
number of cuts produced an average reduction of the number of
nodes in the branching tree in all rows of the table. We observed

that the computational times improved considerably with the new
approach. A deeper analysis led us to conclude that the cuts added
by the solver were slowing down the process. Although constraints
(36) have no effect when constraints (51) are combined with the
rest of valid inequalities in formulation (P’), and thus their separa-
tion has no sense in this case, we gave (P’) the opportunity of run
without the solver’s cuts, and named (P'c) the columns with the
corresponding results. Note that, in general, the number of nodes
of the search tree and the computational times dipped to a record
low.

The results with the best combination of inequalities over the
2880 instances with unit weights are shown in Table 5.

In this case (NP) could be used in Nossack and Pesch
(2014a) only to solve instances with up to 8 nodes and the ad-hoc
branch-and-bound algorithm could not solve instances with 32 to
40 nodes. In general, these instances were more difficult to solve,
and all formulations produced worse upper bounds and needed
larger computational times.

When we included the separation of valid inequalities (36) in
formulation (P), the average number of cuts per instance in the
largest instances with n = 40 was 92, much larger than in the case
of random weights. Since we prevented the solver from using its
own cuts, we incorporated again the most promising valid inequal-
ities. The effect was a significant reduction of the computational
times.

Regarding (P’), the bounds were again quite better but the com-
putational times were affected by several instances that required
many branching nodes and large computational times (in particu-
lar, four of them took more than 1000 seconds). But the removal
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Table 5

Results using unit weights.
n OPT B m Clusters UB BnB nodes Times (s)

k kope NPBB  (P) (P) NPBB  (P) (P) (Pc) (P'c) (NP) NPBB (P) (P (Pc) (Pc)

6 10416 3.0 117 35 2.6 104.8  105.1 1044 1 1 1 0.72 0.93 028 0.01 0.00 0.00 0.00 0.00
8 12708 3.0 191 4.0 33 1275 1282 1272 1 1 1 0.93 0.96 0.91 0.02 0.00 0.00 0.00 0.00
12 16204 3.0 356 6.5 51 164.1 167.6 1634 3 2 1 2.87 135 0.12 0.04 0.03 0.02 0.01
16 196.21 30 534 9.0 6.7 1989 2051 198.1 5 10 1 14.19 1.83 0.52 0.25 0.17 0.09 0.07
20 42540 70 720 5.0 3.7 4385 4690 4334 15 23 4 3135 5.30 2.56 0.72 142 0.27 0.67
24 47767 70 904 6.0 40 4928 5404 4882 33 130 9 171.73 16.03 6.45 1.68 3.65 0.59 1.54
28 52290 70 1107 75 49 5463 6065 5403 88 806 40 1022.75 51.27 2182 479 11.20 1.80 4.58
30 54648 70 1204 8.0 52 570.2 6354 5642 136 1378 53 1868.83 79.88 4137 9.78 1474 317 7.58
32 57578 70 1304 8.0 55 - 6734 5958 — 1673 91 2270.63 129.85 - 10.31 20.62 3.87 9.05
34 59046 70 1408 8.0 59 - 6939 613.0 — 1858 87 2427.56 150.85 - 11.54 2326 4.69 8.94
36 617.88 70 1497 95 6.3 — 7371 6444 — 9090 259  12384.84 422.60 - 6098 44.81 2259 1785
40 66342 70 1705 100 69 - 806.6 6956 — 13985 262 18802.05 511.37 - 78.53 7404 3281 2747

of the automatic cuts of the solver (column (P’c)) produced an im- Acknowledgments

pressive decrease of the computational times and again this op-
tion dominated the others in terms of bounds, nodes and compu-
tational times. This can be observed both, in the case of random
weights and of unit weights.

All in all, the combination of the new formulations, valid in-
equalities, preprocessing and cuts made it possible to efficiently
solve to optimality all instances generated in Nossack and Pesch
(2014a), even those that were not solved before.

Regarding the comparison of our results with NPBB, we could
observe in Table 1 that the cpu times required by our solver in
our computer are at most one third of those obtained in Nossack
and Pesch (2014a). Now it can be observed in Tables 4 and 5 that
our times, for the instances that could be solved in Nossack and
Pesch (2014a), are about one order of magnitude smaller in the
case of unit weights, and more than one third smaller in the in-
stances with random weights.

During the experiments we observed that the addition of some
of the valid inequalities that were not selected in the previous
study also contributed to the reduction of bounds and times in the
case of the largest instances and they should not be left outside of
the resolution of real-life instances.

9. Conclusions

In this paper we have addressed the particular case of the train
scheduling problem arising at rail-rail transshipment yards when
trains are allowed to enter the loading area only once. As in previ-
ous works, we modeled this problem as an acyclic graph partition-
ing problem, for which we have presented two variants of a new
MIP formulation, based on a characterization of acyclic graphs. Ad-
ditionally, several properties of the problem and its solutions are
studied, which allow to derive several valid inequalities and vari-
able fixing rules.

A thorough computational experience has been carried out on a
large set of instances taken from the literature that allowed first to
determine the best configuration of the formulation variants, and
later to show the capability of the resulting enhanced formulations
of solving instances much faster than in the previous approaches,
including a tailor-made branch and bound algorithm. Indeed, we
were able to solve to optimality instances that could not be solved
so far.

Our computational results also confirm what was already ob-
served in previous works concerning the difficulty of the instances;
those with unit weights result much harder to solve than those
with nodes of different weights.

The authors would like to thank Jenny Nossack and Erwin Pesch
for kindly providing us with the data used in the computational
study.
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