6 research outputs found

    Neural Networks for the Web Services Classification

    Get PDF
    This article introduces a n-gram-based approach to automatic classification of Web services using a multilayer perceptron-type artificial neural network. Web services contain information that is useful for achieving a classification based on its functionality. The approach relies on word n-grams extracted from the web service description to determine its membership in a category. The experimentation carried out shows promising results, achieving a classification with a measure F=0.995 using unigrams (2-grams) of words (characteristics composed of a lexical unit) and a TF-IDF weight

    Web Services Ontology Population through Text Classification

    Full text link

    Self-adaptive mobile web service discovery framework for dynamic mobile environment

    Get PDF
    The advancement in mobile technologies has undoubtedly turned mobile web service (MWS) into a significant computing resource in a dynamic mobile environment (DME). The discovery is one of the critical stages in the MWS life cycle to identify the most relevant MWS for a particular task as per the request's context needs. While the traditional service discovery frameworks that assume the world is static with predetermined context are constrained in DME, the adaptive solutions show potential. Unfortunately, the effectiveness of these frameworks is plagued by three problems. Firstly, the coarse-grained MWS categorization approach that fails to deal with the proliferation of functionally similar MWS. Secondly, context models constricted by insufficient expressiveness and inadequate extensibility confound the difficulty in describing the DME, MWS, and the user’s MWS needs. Thirdly, matchmaking requires manual adjustment and disregard context information that triggers self-adaptation, leading to the ineffective and inaccurate discovery of relevant MWS. Therefore, to address these challenges, a self-adaptive MWS discovery framework for DME comprises an enhanced MWS categorization approach, an extensible meta-context ontology model, and a self-adaptive MWS matchmaker is proposed. In this research, the MWS categorization is achieved by extracting the goals and tags from the functional description of MWS and then subsuming k-means in the modified negative selection algorithm (M-NSA) to create categories that contain similar MWS. The designing of meta-context ontology is conducted using the lightweight unified process for ontology building (UPON-Lite) in collaboration with the feature-oriented domain analysis (FODA). The self-adaptive MWS matchmaking is achieved by enabling the self-adaptive matchmaker to learn MWS relevance using a Modified-Negative Selection Algorithm (M-NSA) and retrieve the most relevant MWS based on the current context of the discovery. The MWS categorization approach was evaluated, and its impact on the effectiveness of the framework is assessed. The meta-context ontology was evaluated using case studies, and its impact on the service relevance learning was assessed. The proposed framework was evaluated using a case study and the ProgrammableWeb dataset. It exhibits significant improvements in terms of binary relevance, graded relevance, and statistical significance, with the highest average precision value of 0.9167. This study demonstrates that the proposed framework is accurate and effective for service-based application designers and other MWS clients

    Full Solution Indexing and Efficient Compressed Graph Representation for Web Service Composition

    Get PDF
    Service-oriented computing enhances business scalability and flexibility; providers who expect to benefit from it may bring explosive growth of web services. Searching an optimal composition solution with both functional and non-functional requirements is a computationally demanding problem: the time and space requirements may be infeasible due to the high number of available services. In this thesis, we study QoS-aware service composition problems which satisfy functional requirements as well as non-functional requirements. We use optimization algorithms to enhance accuracy of our searching algorithms. In the first approach, we propose a database-based approach to search a service composition solution. Current in-memory methods are limited by expensive and volatile physical memory, to deal with this problem, we want to use the large space available in relational database on persistence disk. In our database-based approach, all possible service combinations are generated beforehand and stored in a relational database. When a user request comes, SQL queries are composed to search in the database and K best solutions are returned. We test the performance of the proposed approach with a service challenge data set; experiment results demonstrate that this approach can always successfully find top-K valid solutions.We offer three main contributions in this approach. First, we overcome the disadvantages of in-memory composition algorithms, such as volatile and expensive, and provide a solution suitable to cloud environments. Second, we fetch top-K solutions in case the optimal solution is not available as backup solutions to the user. Third, compared with other pre-computing composition methods, we use a single SQL query: there is no need to eliminate spurious services iteratively. Then, we propose the application of a skyline operator to reduce the search space and improve the scalability. Skyline analysis returns all of the elements that are not dominated by another element. We use skyline analysis to find a set of candidate services referred to as "skyline services", therefore, less competitive services are reduced. This allows us to find a solution for a large composition problem with less storage and increased speed. In reality, different users may have same requests, we are motivated to pick some popular requests and generate paths for fast delivery. These paths are stored in a separate table of the relational database. When a user request comes, we first search to find a nearly ready-made solution. Only as a last resort do we search the table with whole paths to find a solution. Finally, to deal with the problem that the search space may explore, we apply a compressed data structure to represent the service composition graph. The goal is to allow algorithms running in in-memory over larger graphs. In this approach, we use compact K2-trees to represent the service composition graph. When a user request comes, we search the K2-tree for a satisfactory solution. We use an array to store values in the last level of the compact tree, which represents relationships between services and concepts. In our algorithms, we find services' inputs (resp. outputs) by locating elements in this array directly, therefore, decompressing the graph is unnecessary. To the best of our knowledge, our work is the first attempt to consider compact structure in solving web service composition problems. Experiment results demonstrate that this approach takes less space and has good scalability when handling a large number of web services. We provide different approaches to search a solution for the user. If the user want to find an optimal solution with fewer services, he may use the database-based approach to search for a solution. If the user want to get a solution in a short time, he may choose the in-memory approach

    Improving reliability of service oriented systems with consideration of cost and time constraints in clouds

    Get PDF
    Web service technology is more and more popular for the implementation of service oriented systems. Additionally, cloud computing platforms, as an efficient and available environment, can provide the computing, networking and storage resources in order to decrease the budget of companies to deploy and manage their systems. Therefore, more service oriented systems are migrated and deployed in clouds. However, these applications need to be improved in terms of reliability, for certain components have low reliability. Fault tolerance approaches can improve software reliability. However, more redundant units are required, which increases the cost and the execution time of the entire system. Therefore, a migration and deployment framework with fault tolerance approaches with the consideration of global constraints in terms of cost and execution time may be needed. This work proposes a migration and deployment framework to guide the designers of service oriented systems in order to improve the reliability under global constraints in clouds. A multilevel redundancy allocation model is adopted for the framework to assign redundant units to the structure of systems with fault tolerance approaches. An improved genetic algorithm is utilised for the generation of the migration plan that takes the execution time of systems and the cost constraints into consideration. Fault tolerant approaches (such as NVP, RB and Parallel) can be integrated into the framework so as to improve the reliability of the components at the bottom level. Additionally, a new encoding mechanism based on linked lists is proposed to improve the performance of the genetic algorithm in order to reduce the movement of redundant units in the model. The experiments compare the performance of encoding mechanisms and the model integrated with different fault tolerance approaches. The empirical studies show that the proposed framework, with a multilevel redundancy allocation model integrated with the fault tolerance approaches, can generate migration plans for service oriented systems in clouds with the consideration of cost and execution time
    corecore