3,013 research outputs found

    Data stream mining techniques: a review

    Get PDF
    A plethora of infinite data is generated from the Internet and other information sources. Analyzing this massive data in real-time and extracting valuable knowledge using different mining applications platforms have been an area for research and industry as well. However, data stream mining has different challenges making it different from traditional data mining. Recently, many studies have addressed the concerns on massive data mining problems and proposed several techniques that produce impressive results. In this paper, we review real time clustering and classification mining techniques for data stream. We analyze the characteristics of data stream mining and discuss the challenges and research issues of data steam mining. Finally, we present some of the platforms for data stream mining

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    TweeProfiles4: a weighted multidimensional stream clustering algorithm

    Get PDF
    O aparecimento das redes sociais abriu aos utilizadores a possibilidade de facilmente partilharem as suas ideias a respeito de diferentes temas, o que constitui uma fonte de informação enriquecedora para diversos campos. As plataformas de microblogging sofreram um grande crescimento e de forma constante nos últimos anos. O Twitter é o site de microblogging mais popular, tornando-se uma fonte de dados interessante para extração de conhecimento. Um dos principais desafios na análise de dados provenientes de redes sociais é o seu fluxo, o que dificulta a aplicação de processos tradicionais de data mining. Neste sentido, a extração de conhecimento sobre fluxos de dados tem recebido um foco significativo recentemente. O TweeProfiles é a uma ferramenta de data mining para análise e visualização de dados do Twitter sobre quatro dimensões: espacial (a localização geográfica do tweet), temporal (a data de publicação do tweet), de conteúdo (o texto do tweet) e social (o grafo dos relacionamentos). Este é um projeto em desenvolvimento que ainda possui muitos aspetos que podem ser melhorados. Uma das recentes melhorias inclui a substituição do algoritmo de clustering original, o qual não suportava o fluxo contínuo dos dados, por um método de streaming. O objetivo desta dissertação passa pela continuação do desenvolvimento do TweeProfiles. Em primeiro lugar, será proposto um novo algoritmo de clustering para fluxos de dados com o objetivo de melhorar o existente. Para esse efeito será desenvolvido um algoritmo incremental com suporte para fluxos de dados multi-dimensionais. Esta abordagem deve permitir ao utilizador alterar dinamicamente a importância relativa de cada dimensão do processo de clustering. Adicionalmente, a avaliação empírica dos resultados será alvo de melhoramento através da identificação e implementação de medidas adequadas de avaliação dos padrões extraídos. O estudo empírico será realizado através de tweets georreferenciados obtidos pelo SocialBus.The emergence of social media made it possible for users to easily share their thoughts on different topics, which constitutes a rich source of information for many fields. Microblogging platforms experienced a large and steady growth over the last few years. Twitter is the most popular microblogging site, making it an interesting source of data for pattern extraction. One of the main challenges of analyzing social media data is its continuous nature, which makes it hard to use traditional data mining. Therefore, mining stream data has also received a lot of attention recently.TweeProfiles is a data mining tool for analyzing and visualizing Twitter data over four dimensions: spatial (the location of the tweet), temporal (the timestamp of the tweet), content (the text of the tweet) and social (relationship graph). This is an ongoing project which still has many aspects that can be improved. For instance, it was recently improved by replacing the original clustering algorithm which could not handle the continuous flow of data with a streaming method. The goal of this dissertation is to continue the development of TweeProfiles. First, the stream clustering process will be improved by proposing a new algorithm. This will be achieved by developing an incremental algorithm with support for multi-dimensional streaming data. Moreover, it should make it possible for the user to dynamically change the relative importance of each dimension in the clustering. Additionally, the empirical evaluation of the results will also be improved.Suitable measures to evaluate the extracted patterns will be identified and implemented. An empirical study will be done using data consisting of georeferenced tweets from SocialBus

    Dynamic feature selection for clustering high dimensional data streams

    Get PDF
    open access articleChange in a data stream can occur at the concept level and at the feature level. Change at the feature level can occur if new, additional features appear in the stream or if the importance and relevance of a feature changes as the stream progresses. This type of change has not received as much attention as concept-level change. Furthermore, a lot of the methods proposed for clustering streams (density-based, graph-based, and grid-based) rely on some form of distance as a similarity metric and this is problematic in high-dimensional data where the curse of dimensionality renders distance measurements and any concept of “density” difficult. To address these two challenges we propose combining them and framing the problem as a feature selection problem, specifically a dynamic feature selection problem. We propose a dynamic feature mask for clustering high dimensional data streams. Redundant features are masked and clustering is performed along unmasked, relevant features. If a feature's perceived importance changes, the mask is updated accordingly; previously unimportant features are unmasked and features which lose relevance become masked. The proposed method is algorithm-independent and can be used with any of the existing density-based clustering algorithms which typically do not have a mechanism for dealing with feature drift and struggle with high-dimensional data. We evaluate the proposed method on four density-based clustering algorithms across four high-dimensional streams; two text streams and two image streams. In each case, the proposed dynamic feature mask improves clustering performance and reduces the processing time required by the underlying algorithm. Furthermore, change at the feature level can be observed and tracked

    A survey on feature drift adaptation: Definition, benchmark, challenges and future directions

    Get PDF
    Data stream mining is a fast growing research topic due to the ubiquity of data in several real-world problems. Given their ephemeral nature, data stream sources are expected to undergo changes in data distribution, a phenomenon called concept drift. This paper focuses on one specific type of drift that has not yet been thoroughly studied, namely feature drift. Feature drift occurs whenever a subset of features becomes, or ceases to be, relevant to the learning task; thus, learners must detect and adapt to these changes accordingly. We survey existing work on feature drift adaptation with both explicit and implicit approaches. Additionally, we benchmark several algorithms and a naive feature drift detection approach using synthetic and real-world datasets. The results from our experiments indicate the need for future research in this area as even naive approaches produced gains in accuracy while reducing resources usage. Finally, we state current research topics, challenges and future directions for feature drift adaptation
    corecore