258 research outputs found

    Review of Autoconfiguration for MANETs

    Get PDF

    Address autoconfiguration in wireless ad hoc networks: protocols and techniques

    Full text link

    Experimental evaluation of the usage of ad hoc networks as stubs for multiservice networks

    Get PDF
    This paper describes an experimental evaluation of a multiservice ad hoc network, aimed to be interconnected with an infrastructure, operator-managed network. This network supports the efficient delivery of services, unicast and multicast, legacy and multimedia, to users connected in the ad hoc network. It contains the following functionalities: routing and delivery of unicast and multicast services; distributed QoS mechanisms to support service differentiation and resource control responsive to node mobility; security, charging, and rewarding mechanisms to ensure the correct behaviour of the users in the ad hoc network. This paper experimentally evaluates the performance of multiple mechanisms, and the influence and performance penalty introduced in the network, with the incremental inclusion of new functionalities. The performance results obtained in the different real scenarios may question the real usage of ad-hoc networks for more than a minimal number of hops with such a large number of functionalities deployed

    QoS-Based Web Service Discovery in Mobile Ad Hoc Networks Using Swarm Strategies

    Get PDF
    Mobile ad hoc networks are noncentralised, multihop, wireless networks that lack a common infrastructure and hence require self-organisation. Their infrastructureless and dynamic nature entails the implementation of a new set of networking technologies in order to provide efficient end-to-end communication according to the principles of the standard TCP/IP suite. Routing, IP address autoconfiguration and Web service discovery are among the most challenging tasks in the ad hoc network domain. Swarm intelligence is a relatively new approach to problem solving that takes inspiration from the social behaviours of insects, such as ants and bees. Self-organization, decentralization, adaptivity, robustness, and scalability make swarm intelligence a successful design paradigm for the above-mentioned problems. In this paper we proposeBeeAdHocServiceDiscovery, a new service discovery algorithm based on the bee metaphor, which also takes into account quality metrics estimates. The protocol has been specifically designed to work in mobile ad hoc network scenarios operating withBeeadhoc, a well-known routing algorithm inspired by nature. We present both the protocol strategy and the formal evaluation of the discovery overhead and route optimality metrics showing thatBeeAdHocServiceDiscoveryguarantees valuable performances even in large scale ad hoc wireless networks. Eventually, future research suggestions are sketched

    Dinamička distribucija sigurnosnih ključeva i koalicijski protokol IP adresa za mobilne ad hoc mreže

    Get PDF
    In mobile adhoc networks (MANETs) a tree-based dynamic address auto-configuration protocol (T-DAAP) is one of the best protocols designed for address assignment as far as the network throughput and packet delays are concerned. Moreover, MANET security is an important factor for many applications given that any node can listen to the channel and overhear the packets being transmitted. In this paper, we merge the address assignment with the security key delivery into one protocol, such that a node in the MANET is configured with IP address and security key simultaneously. To the best of our knowledge, no single protocol provides concurrent assignment of IP addresses and security keys for MANET nodes. The proposed method, which is based on T-DAAP, shows significant enhancements in the required control packets needed for assigning network nodes IP addresses and security keys, MAC layer packets, total end-to-end delay, and channel throughput over those obtained when using separate protocols. Additionally, it provides not only efficient security keys to the nodes from the first moment they join the network, but also secure delivery of the address and security key to all participating nodes. It is noteworthy to mention that providing a complete security model for MANET to detect and countermeasure network security threats and attacks is beyond the scope of our proposed protocol.Kod mobilnih ad hoc mreža (MANET) dinamički protokol za autokonfiguraciju adresa baziran na stablu (T-DAAP) je jedan od najboljih protokola dizajniranih za dodjelu adresa iz perspektive propusnosti mreže i i kašnjenja paketa. štoviše, sigurnost MANET-a je važan faktor za mnoge aplikacije s obzirom da bilo koji čvor može osluškivati kanal i slučajno čuti pakete koji se šalju. U ovom radu, dodjela adresa i dostava sigurnosnih ključeva spojeni su u jedan protokol tako da je čvor u MANET-u konfiguriran simultano s IP adresom i sigurnosnim ključem. Prema saznanjima autora, niti jedan postojeći protokol ne pruža istovremeno dodjeljivanje IP adrese i sigurnosnog ključa za MANET čvorove. Predložena metoda, koja se bazira na T-DAAP-u, pokazuje značajna poboljšanja u odnosu na metode koje koriste odvojene porotokole, kod traženih kontrolnih paketa koji su potrebni za dodjeljivanje IP adresa i sigurnosnih ključeva čvorovima mreže, MAC paketa, ukupnog end-to-end kašnjenja i propusnosti kanala. Dodatno pruža ne samo efikasne sigurnosne ključeve čvorovima od trenutka kad se priključe mreži, nego i sigurno dostavljanje adrese i sigurnosnog ključa svim čvorovima koji sudjeluju u mreži. Važno je spomenuti da je pružanje cjelokupnog sigurnosnog modela za MANET koji detektira dodatno i protumjere prijetnjama i napadima na sigurnost mreže izvan dosega predloženog protokola

    Internet connection method for mobile ad hoc wireless networks

    Get PDF
    In recent years, wireless networks with Internet services have become more and more popular. Technologies which integrate Internet and wireless networks have extended traditional Internet applications into a more flexible and dynamic environment. This research work investigates the technology that supports the connection between a Mobile Ad Hoc Wireless Network (MANET) and the Internet, which enables the current wireless Internet technologies to provide a ubiquitous wireless life style. With detailed analysis of the existing wireless Internet technologies and MANETs regarding their features and applications, the demand and lack of research work for an application to provide Internet connection to MANET is indicated. The primary difficulty for MANET and Internet connection is that the dynamic features of MANET do not suit the traditional connection methods used in infrastructure wireless networks. This thesis introduces new concept of the 'Gateway Awareness' (GAW) to the wireless devices in the MANET. GAW is a new routing protocol designed by the author of this thesis, at the University of Warwick. Based on GAW, an inclusive definition for the connection method, which supports the Internet connection and keeps the independency of routing in MANET, is addressed. Unlike other research work, this method supports the MANET and Internet communication in both directions. Furthermore, it explores possible ways of using the Internet as an extension for wireless communications. The GAW routing method is developed from destination sequenced distance vector (DSDV) routing protocol. However, it defines a layer of wireless nodes (known as GAWNs) with exclusive functions for the Internet connection task. The layer of GAWNs brings a new set of route update and route selection method. Simulations show that the GAW routing method provides quality Internet connection performance in different scenarios compared with other methods. In particular, the connection is completed with minimum effect on the independent MANET while the routing efficiency and accuracy is guaranteed

    Topics on modelling and simulation of wireless networking protocols

    Get PDF
    The use of computer simulation to study complex systems has grown significantly over the past several decades. This is especially true with regard to computer networks, where simulation has become a widespread tool used in academic, commercial and military applications. Computer model representations of communication protocol stacks are used to replicate and predict the behavior of real world counterparts to solve a variety of problems.The performance of simulators, measured in both accuracy of results and run time, is a constant concern to simulation users. The running time for high delity simulation of large-scale mobile ad hoc networks can be prohibitively high. The execution time of propagation e ects calculations for a single transmission alone can grow unmanageable to account for all potential receivers. Discrete event simulators can also su er from excessive generation and processing of events, both due to network size and model complexity. In this thesis, three levels of abstracting the Institute of Electrical and Electronics Engineers (IEEE) 802.11 Request to Send/Clear to Send (RTS/CTS) channel access mechanism are presented. In the process of assessing the abstractions' ability to mitigate runtimecost while retaining comparable results to that of a commercially available simulator, OPNET, the abstractions were found to be better suited to collecting one metric over another.Performance issues aside, simulation is an ideal choice for use in prototyping and developing protocols. The costs of simulation are orders of magnitude smaller than that of network testbeds, especially after factoring in the logistics, maintenance, and space required to test live networks. For instance, Internet Protocol version 6 (IPv6) stateless address autocon guration protocols have yet to be convincingly shown to cope with the dynamic, infrastructure-free environment of Mobile Ad hoc Networks (MANETs). This thesis provides a literature survey of autocon guration schemes designed for MANETs, with particular focus on a stateless autocon guration scheme by Jelger andNoel (SECON 2005). The selected scheme provides globally routable IPv6 pre xes to a MANET attached to the Internet via gateways. Using OPNET simulation, the Jelger-Noel scheme is examined with new cluster mobility models, added gateway mobility, and varied network sizes. Performance of the Jelger-Noel scheme, derived from overhead, autocon gura ion time and pre x stability metrics, was found to be highly dependent on network density, and suggested further re nement before deployment.Finally, in cases where a network testbed is used to test protocols, it is still advantageous to run simulations in parallel. While testbeds can help expose design aws due to code or hardware di erences, discrete event simulation environments can o er extensive debugging capabilities andevent control. The two tools provide independent methods of validating the performance of protocols, as well as providing useful feedback on correct protocol implementation and con guration. This thesis presents the Open Shortest Path First (OSPF) routing protocol and its MANET extensions as candidate protocols to test in simulated and emulated MANETs. The measured OSPF overhead from both environments was used as a benchmark to construct equivalent MANET representations and protocol con guration, made particularly challenging due to the wired nature of the emulation testbed. While attempting to duplicate and validate results of a previous OSPF study, limitations of the simulated implementation of OSPF were revealed.M.S., Electrical Engineering -- Drexel University, 200
    corecore