8 research outputs found

    A New Incremental Decision Tree Learning for Cyber Security based on ILDA and Mahalanobis Distance

    Get PDF
    A cyber-attack detection is currently essential for computer network protection. The fundamentals of protection are to detect cyber-attack effectively with the ability to combat it in various ways and with constant data learning such as internet traffic. With these functions, each cyber-attack can be memorized and protected effectively any time. This research will present procedures for a cyber-attack detection system Incremental Decision Tree Learning (IDTL) that use the principle through Incremental Linear Discriminant Analysis (ILDA) together with Mahalanobis distance for classification of the hierarchical tree by reducing data features that enhance classification of a variety of malicious data. The proposed model can learn a new incoming datum without involving the previous learned data and discard this datum after being learned. The results of the experiments revealed that the proposed method can improve classification accuracy as compare with other methods. They showed the highest accuracy when compared to other methods. If comparing with the effectiveness of each class, it was found that the proposed method can classify both intrusion datasets and other datasets efficiently

    Flow-Based Rules Generation for Intrusion Detection System using Machine Learning Approach

    Get PDF
    Rapid increase in internet users also brought new ways of privacy and security exploitation. Intrusion is one of such attacks in which an authorized user can access system resources and is major concern for cyber security community. Although AV and firewall companies work hard to cope with this kind of attacks and generate signatures for such exploits but still, they are lagging behind badly in this race. This research proposes an approach to ease the task of rules generationby making use of machine learning for this purpose. We used 17 network features to train a random forest classifier and this trained classifier is then translated into rules which can easily be integrated with most commonly used firewalls like snort and suricata etc. This work targets five kind of attacks: brute force, denial of service, HTTP DoS, infiltrate from inside and SSH brute force. Separate rules are generated for each kind of attack. As not every generated rule contributes toward detection that's why an evaluation mechanism is also used which selects the best rule on the basis of precision and f-measure values. Generated rules for some attacks have 100% precision with detection rate of more than 99% which represents effectiveness of this approach on traditional firewalls. As our proposed system translates trained classifier model into set of rules for firewalls so it is not only effective for rules generation but also give machine learning characteristics to traditional firewall to some extent.&nbsp

    Controles y mecanismo en la gestión de seguridad de red basado en Sistemas de Detección de intrusos: Una revisión sistemática de la literatura

    Get PDF
    El rápido crecimiento de las tecnologías no solo formula la vida más fácilmente, sino que también expone muchos problemas de seguridad. Con el avance de Internet a lo largo de los años, se ha incrementado el número de ataques a través de Internet. El Sistema de detección de intrusiones (IDS) es una de las herramientas de soporte aplicables a la seguridad de la información. IDS proporciona un entorno fiable para los negocios, los mantiene alejado de las actividades sospechosas de la red. El presente artículo busca identificar el estado en que se encuentran las investigaciones sobre los controles y mecanismos relacionados con la gestión de seguridad de red basándose en IDS. Para la identificación de dichos elementos mencionados realizo una revisión sistemática de la literatura en las bases de datos reconocidas. De un aproximado de 376 artículos se realizó una revisión, y se identificaron 35 artículos que hacen referencia al tema de estudio propuesto con anterioridad. Luego de realizar una revisión sistemática de la literatura se encontró que entre los controles más usados es el tráfico de red en su totalidad, y se pudo encontrar un sinfín de herramientas provenientes de Machine Learning.LIMAEscuela Profesional de Ingeniería de SistemasInfraestructura Tecnológica - Auditoria y Seguridad de T

    Improved hybrid teaching learning based optimization-jaya and support vector machine for intrusion detection systems

    Get PDF
    Most of the currently existing intrusion detection systems (IDS) use machine learning algorithms to detect network intrusion. Machine learning algorithms have widely been adopted recently to enhance the performance of IDSs. While the effectiveness of some machine learning algorithms in detecting certain types of network intrusion has been ascertained, the situation remains that no single method currently exists that can achieve consistent results when employed for the detection of multiple attack types. Hence, the detection of network attacks on computer systems has remain a relevant field of research for some time. The support vector machine (SVM) is one of the most powerful machine learning algorithms with excellent learning performance characteristics. However, SVM suffers from many problems, such as high rates of false positive alerts, as well as low detection rates of rare but dangerous attacks that affects its performance; feature selection and parameters optimization are important operations needed to increase the performance of SVM. The aim of this work is to develop an improved optimization method for IDS that can be efficient and effective in subset feature selection and parameters optimization. To achieve this goal, an improved Teaching Learning-Based Optimization (ITLBO) algorithm was proposed in dealing with subset feature selection. Meanwhile, an improved parallel Jaya (IPJAYA) algorithm was proposed for searching the best parameters (C, Gama) values of SVM. Hence, a hybrid classifier called ITLBO-IPJAYA-SVM was developed in this work for the improvement of the efficiency of network intrusion on data sets that contain multiple types of attacks. The performance of the proposed approach was evaluated on NSL-KDD and CICIDS intrusion detection datasets and from the results, the proposed approaches exhibited excellent performance in the processing of large datasets. The results also showed that SVM optimization algorithm achieved accuracy values of 0.9823 for NSL-KDD dataset and 0.9817 for CICIDS dataset, which were higher than the accuracy of most of the existing paradigms for classifying network intrusion detection datasets. In conclusion, this work has presented an improved optimization algorithm that can improve the accuracy of IDSs in the detection of various types of network attack

    Система керування інформаційною безпекою на базі хмарної платформи FortiSIEM

    Get PDF
    Робота публікується згідно наказу Ректора НАУ від 27.05.2021 р. №311/од "Про розміщення кваліфікаційних робіт здобувачів вищої освіти в репозиторії університету". Керівник дипломної роботи: професор кафедри ТКРС, Климчук В.П.У наш час кількість та різноманітність загроз, пов'язаних з порушенням цілісності та конфіденційності інформації щороку зростає. І системи безпеки повинні встигати додавати нові компоненти, розширюючи інфраструктуру інформаційної безпеки. У випадку, коли є кілька систем інформаційної безпеки, важко продуктивно їх адмініструвати і розуміти, що відбувається в інфраструктурі. Провідні фахівці у цій галузі вважають, що необхідно створити комплексний підхід у сфері реагування та розслідування інцидентів інформаційної безпеки у вигляді єдиного централізованого рішення. Тому багато компаній інтегрують у свої системи SIEM (Security Information Event Management)

    An ensemble-based anomaly-behavioural crypto-ransomware pre-encryption detection model

    Get PDF
    Crypto-ransomware is a malware that leverages cryptography to encrypt files for extortion purposes. Even after neutralizing such attacks, the targeted files remain encrypted. This irreversible effect on the target is what distinguishes crypto-ransomware attacks from traditional malware. Thus, it is imperative to detect such attacks during pre-encryption phase. However, existing crypto-ransomware early detection solutions are not effective due to inaccurate definition of the pre-encryption phase boundaries, insufficient data at that phase and the misuse-based approach that the solutions employ, which is not suitable to detect new (zero-day) attacks. Consequently, those solutions suffer from low detection accuracy and high false alarms. Therefore, this research addressed these issues and developed an Ensemble-Based Anomaly-Behavioural Pre-encryption Detection Model (EABDM) to overcome data insufficiency and improve detection accuracy of known and novel crypto-ransomware attacks. In this research, three phases were used in the development of EABDM. In the first phase, a Dynamic Pre-encryption Boundary Definition and Features Extraction (DPBD-FE) scheme was developed by incorporating Rocchio feedback and vector space model to build a pre-encryption boundary vector. Then, an improved term frequency-inverse document frequency technique was utilized to extract the features from runtime data generated during the pre-encryption phase of crypto-ransomware attacks’ lifecycle. In the second phase, a Maximum of Minimum-Based Enhanced Mutual Information Feature Selection (MM-EMIFS) technique was used to select the informative features set, and prevent overfitting caused by high dimensional data. The MM-EMIFS utilized the developed Redundancy Coefficient Gradual Upweighting (RCGU) technique to overcome data insufficiency during pre-encryption phase and improve feature’s significance estimation. In the final phase, an improved technique called incremental bagging (iBagging) built incremental data subsets for anomaly and behavioural-based detection ensembles. The enhanced semi-random subspace selection (ESRS) technique was then utilized to build noise-free and diverse subspaces for each of these incremental data subsets. Based on the subspaces, the base classifiers were trained for each ensemble. Both ensembles employed the majority voting to combine the decisions of the base classifiers. After that, the decision of the anomaly ensemble was combined into behavioural ensemble, which gave the final decision. The experimental evaluation showed that, DPBD-FE scheme reduced the ratio of crypto-ransomware samples whose pre-encryption boundaries were missed from 18% to 8% as compared to existing works. Additionally, the features selected by MM-EMIFS technique improved the detection accuracy from 89% to 96% as compared to existing techniques. Likewise, on average, the EABDM model increased detection accuracy from 85% to 97.88% and reduced the false positive alarms from 12% to 1% in comparison to existing early detection models. These results demonstrated the ability of the EABDM to improve the detection accuracy of crypto-ransomware attacks early and before the encryption takes place to protect files from being held to ransom

    Securing cloud-enabled smart cities by detecting intrusion using spark-based stacking ensemble of machine learning algorithms

    Get PDF
    With the use of cloud computing, which provides the infrastructure necessary for the efficient delivery of smart city services to every citizen over the internet, intelligent systems may be readily integrated into smart cities and communicate with one another. Any smart system at home, in a car, or in the workplace can be remotely controlled and directed by the individual at any time. Continuous cloud service availability is becoming a critical subscriber requirement within smart cities. However, these cost-cutting measures and service improvements will make smart city cloud networks more vulnerable and at risk. The primary function of Intrusion Detection Systems (IDS) has gotten increasingly challenging due to the enormous proliferation of data created in cloud networks of smart cities. To alleviate these concerns, we provide a framework for automatic, reliable, and uninterrupted cloud availability of services for the network data security of intelligent connected devices. This framework enables IDS to defend against security threats and to provide services that meet the users' Quality of Service (QoS) expectations. This study's intrusion detection solution for cloud network data from smart cities employed Spark and Waikato Environment for Knowledge Analysis (WEKA). WEKA and Spark are linked and made scalable and distributed. The Hadoop Distributed File System (HDFS) storage advantages are combined with WEKA's Knowledge flow for processing cloud network data for smart cities. Utilizing HDFS components, WEKA's machine learning algorithms receive cloud network data from smart cities. This research utilizes the wrapper-based Feature Selection (FS) approach for IDS, employing both the Pigeon Inspired Optimizer (PIO) and the Particle Swarm Optimization (PSO). For classifying the cloud network traffic of smart cities, the tree-based Stacking Ensemble Method (SEM) of J48, Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) are applied. Performance evaluations of our system were conducted using the UNSW-NB15 and NSL-KDD datasets. Our technique is superior to previous works in terms of sensitivity, specificity, precision, false positive rate (FPR), accuracy, F1 Score, and Matthews correlation coefficient (MCC)
    corecore