12 research outputs found

    CloudMan as a platform for tool, data, and analysis distribution

    Get PDF
    Background Cloud computing provides an infrastructure that facilitates large scale computational analysis in a scalable, democratized fashion, However, in this context it is difficult to ensure sharing of an analysis environment and associated data in a scalable and precisely reproducible way. Results CloudMan (usecloudman.org) enables individual researchers to easily deploy, customize, and share their entire cloud analysis environment, including data, tools, and configurations. Conclusions With the enabled customization and sharing of instances, CloudMan can be used as a platform for collaboration. The presented solution improves accessibility of cloud resources, tools, and data to the level of an individual researcher and contributes toward reproducibility and transparency of research solutions

    Cloudflow – A Framework for MapReduce Pipeline Development in Biomedical Research

    Get PDF
    The data-driven parallelization framework Hadoop MapReduce allows analysing large data sets in a scalable way. Since the development of MapReduce programs can be a time-intensive and challenging task, the application and usage of Hadoop in Biomedical Research is still limited. Here we resent Cloudflow, a high-level framework to hide the implementation details of Hadoop and to provide a set of building blocks to create biomedical pipelines in a more intuitive way. We demonstrate the benefit of Cloudflow on three different genetic use cases. It will be shown how the framework can be combined with the Hadoop workflow system Cloudgene and the cloud orchestration platform CloudMan to provide Hadoop pipelines as a service to everyone

    Cloudflow – A Framework for MapReduce Pipeline Development in Biomedical Research

    Get PDF
    - The data-driven parallelization framework Hadoop MapReduce allows analysing large data sets in a scalable way. Since the development of MapReduce programs can be a time-intensive and challenging task, the application and usage of Hadoop in Biomedical Research is still limited. Here we present Cloudflow, a high-level framework to hide the implementation details of Hadoop and to provide a set of building blocks to create biomedical pipelines in a more intuitive way. We demonstrate the benefit of Cloudflow on three different genetic use cases. It will be shown how the framework can be combined with the Hadoop workflow system Cloudgene and the cloud orchestration platform CloudMan to provide Hadoop pipelines as a service to everyone. The framework is open source and free available at https://github.com/genepi/cloudflow. Document type: Conference objec

    Bio-Docklets: virtualization containers for single-step execution of NGS pipelines

    Full text link
    Processing of next-generation sequencing (NGS) data requires significant technical skills, involving installation, configuration, and execution of bioinformatics data pipelines, in addition to specialized postanalysis visualization and data mining software. In order to address some of these challenges, developers have leveraged virtualization containers toward seamless deployment of preconfigured bioinformatics software and pipelines on any computational platform. We present an approach for abstracting the complex data operations of multistep, bioinformatics pipelines for NGS data analysis. As examples, we have deployed 2 pipelines for RNA sequencing and chromatin immunoprecipitation sequencing, preconfigured within Docker virtualization containers we call Bio-Docklets. Each Bio-Docklet exposes a single data input and output endpoint and from a user perspective, running the pipelines as simply as running a single bioinformatics tool. This is achieved using a “meta-script” that automatically starts the Bio-Docklets and controls the pipeline execution through the BioBlend software library and the Galaxy Application Programming Interface. The pipeline output is postprocessed by integration with the Visual Omics Explorer framework, providing interactive data visualizations that users can access through a web browser. Our goal is to enable easy access to NGS data analysis pipelines for nonbioinformatics experts on any computing environment, whether a laboratory workstation, university computer cluster, or a cloud service provider. Beyond end users, the Bio-Docklets also enables developers to programmatically deploy and run a large number of pipeline instances for concurrent analysis of multiple datasets

    Laniakea : an open solution to provide Galaxy "on-demand" instances over heterogeneous cloud infrastructures

    Get PDF
    Background: While the popular workflow manager Galaxy is currently made available through several publicly accessible servers, there are scenarios where users can be better served by full administrative control over a private Galaxy instance, including, but not limited to, concerns about data privacy, customisation needs, prioritisation of particular job types, tools development, and training activities. In such cases, a cloud-based Galaxy virtual instance represents an alternative that equips the user with complete control over the Galaxy instance itself without the burden of the hardware and software infrastructure involved in running and maintaining a Galaxy server. Results: We present Laniakea, a complete software solution to set up a \u201cGalaxy on-demand\u201d platform as a service. Building on the INDIGO-DataCloud software stack, Laniakea can be deployed over common cloud architectures usually supported both by public and private e-infrastructures. The user interacts with a Laniakea-based service through a simple front-end that allows a general setup of a Galaxy instance, and then Laniakea takes care of the automatic deployment of the virtual hardware and the software components. At the end of the process, the user gains access with full administrative privileges to a private, production-grade, fully customisable, Galaxy virtual instance and to the underlying virtual machine (VM). Laniakea features deployment of single-server or cluster-backed Galaxy instances, sharing of reference data across multiple instances, data volume encryption, and support for VM image-based, Docker-based, and Ansible recipe-based Galaxy deployments. A Laniakea-based Galaxy on-demand service, named Laniakea@ReCaS, is currently hosted at the ELIXIR-IT ReCaS cloud facility. Conclusions: Laniakea offers to scientific e-infrastructures a complete and easy-to-use software solution to provide a Galaxy on-demand service to their users. Laniakea-based cloud services will help in making Galaxy more accessible to a broader user base by removing most of the burdens involved in deploying and running a Galaxy service. In turn, this will facilitate the adoption of Galaxy in scenarios where classic public instances do not represent an optimal solution. Finally, the implementation of Laniakea can be easily adapted and expanded to support different services and platforms beyond Galaxy

    Genomics Virtual Laboratory: a practical bioinformatics workbench for the cloud

    Get PDF
    Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets ; workflow platform(s) enabling accessible, reproducible, portable analyses, through a flexible set of interfaces ; highly available, scalable computational resources ; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise

    Laniakea: an open solution to provide Galaxy "on-demand" instances over heterogeneous cloud infrastructures

    Get PDF
    Background: Galaxy is rapidly becoming the de facto standard among workflow managers for bioinformatics. A rich feature set, its overall flexibility, and a thriving community of enthusiastic users are among the main factors contributing to the popularity of Galaxy and Galaxy based applications. One of the main advantages of Galaxy consists in providing access to sophisticated analysis pipelines, e.g., involving numerous steps and large data sets, even to users lacking computer proficiency, while at the same time improving reproducibility and facilitating teamwork and data sharing among researchers. Although several Galaxy public services are currently available, these resources are often overloaded with a large number of jobs and offer little or no customization options to end users. Moreover, there are scenarios where a private Galaxy instance still constitutes a more viable alternative, including, but not limited to, heavy workloads, data privacy concerns or particular needs of customization. In such cases, a cloud-based virtual Galaxy instance can represent a solution that overcomes the typical burdens of managing the local hardware and software infrastructure needed to run and maintain a production-grade Galaxy service. Results: Here we present Laniakea, a robust and feature-rich software suite which can be deployed on any scientific or commercial Cloud infrastructure in order to provide a "Galaxy on demand" Platform as a Service (PaaS). Laying its foundations on the INDIGO-DataCloud middleware, which has been developed to accommodate the needs of a large number of scientific communities, Laniakea can be deployed and provisioned over multiple architectures by private or public e-infrastructures. The end user interacts with Laniakea through a front-end that allows a general setup of the Galaxy instance, then Laniakea takes charge of the deployment both of the virtual hardware and all the software components. At the end of the process the user has access to a private, production-grade, yet fully customizable, Galaxy virtual instance. Laniakea's supports the deployment of plain or cluster backed Galaxy instances, shared reference data volumes, encrypted data volumes and rapid development of novel Galaxy flavours, that is Galaxy configurations tailored for specific tasks. As a proof of concept, we provide a demo Laniakea instance hosted at an ELIXIR-IT Cloud facility. Conclusions: The migration of scientific computational services towards virtualization and e-infrastructures is one of the most visible trends of our times. Laniakea provides Cloud administrators with a ready-to-use software suite that enables them to offer Galaxy, a popular workflow manager for bioinformatics, as an on-demand PaaS to their users. We believe that Laniakea can concur in making the many advantages of using Galaxy more accessible to a broader user base by removing most of the burdens involved in running a private instance. Finally, Laniakea's design is sufficiently general and modular that could be easily adapted to support different services and platforms beyond Galaxy

    Cloud Computing in Healthcare and Biomedicine

    Full text link
    corecore