513 research outputs found

    Cloud-based Integrated Process Planning and Scheduling Optimisation via Asynchronous Islands

    Get PDF
    In this paper, we present Optimisation as a Service (OaaS) for an integrated process planning and scheduling in smart factories based on a distributed multi-criteria genetic algorithm (GA). In contrast to the traditional distributed GA following the island model, the proposed islands are executed asynchronously and exchange solutions at time points depending solely on the optimisation progress at each island. Several solutions' exchange strategies are proposed, implemented in Amazon Elastic Container Service for Kubernetes (Amazon EKS) and evaluated using a real-world manufacturing problem

    TiLA: Twin-in-the-Loop Architecture for Cyber-Physical Production Systems

    Full text link
    Digital twin is a virtual replica of a real-world object that lives simultaneously with its physical counterpart. Since its first introduction in 2003 by Grieves, digital twin has gained momentum in a wide range of applications such as industrial manufacturing, automotive and artificial intelligence. However, many digital-twin-related approaches, found in industries as well as literature, mainly focus on modelling individual physical things with high-fidelity methods with limited scalability. In this paper, we introduce a digital-twin architecture called TiLA (Twin-in-the-Loop Architecture). TiLA employs heterogeneous models and online data to create a digital twin, which follows a Globally Asynchronous Locally Synchronous (GALS) model of computation. It facilitates the creation of a scalable digital twin with different levels of modelling abstraction as well as giving GALS formalism for execution strategy. Furthermore, TiLA provides facilities to develop applications around the twin as well as an interface to synchronise the twin with the physical system through an industrial communication protocol. A digital twin for a manufacturing line has been developed as a case study using TiLA. It demonstrates the use of digital twin models together with online data for monitoring and analysing failures in the physical system

    A Tutorial on Clique Problems in Communications and Signal Processing

    Full text link
    Since its first use by Euler on the problem of the seven bridges of K\"onigsberg, graph theory has shown excellent abilities in solving and unveiling the properties of multiple discrete optimization problems. The study of the structure of some integer programs reveals equivalence with graph theory problems making a large body of the literature readily available for solving and characterizing the complexity of these problems. This tutorial presents a framework for utilizing a particular graph theory problem, known as the clique problem, for solving communications and signal processing problems. In particular, the paper aims to illustrate the structural properties of integer programs that can be formulated as clique problems through multiple examples in communications and signal processing. To that end, the first part of the tutorial provides various optimal and heuristic solutions for the maximum clique, maximum weight clique, and kk-clique problems. The tutorial, further, illustrates the use of the clique formulation through numerous contemporary examples in communications and signal processing, mainly in maximum access for non-orthogonal multiple access networks, throughput maximization using index and instantly decodable network coding, collision-free radio frequency identification networks, and resource allocation in cloud-radio access networks. Finally, the tutorial sheds light on the recent advances of such applications, and provides technical insights on ways of dealing with mixed discrete-continuous optimization problems

    Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review

    Get PDF
    The need for a greener and more sustainable energy system evokes a need for more extensive energy system transition research. The penetration of distributed energy resources and Internet of Things technologies facilitate energy system transition towards the next generation of energy system concepts. The next generation of energy system concepts include “integrated energy system”, “multi-energy system”, or “smart energy system”. These concepts reveal that future energy systems can integrate multiple energy carriers with autonomous intelligent decision making. There are noticeable trends in using the agent-based method in research of energy systems, including multi-energy system transition simulation with agent-based modeling (ABM) and multi-energy system management with multi-agent system (MAS) modeling. The need for a comprehensive review of the applications of the agent-based method motivates this review article. Thus, this article aims to systematically review the ABM and MAS applications in multi-energy systems with publications from 2007 to the end of 2021. The articles were sorted into MAS and ABM applications based on the details of agent implementations. MAS application papers in building energy systems, district energy systems, and regional energy systems are reviewed with regard to energy carriers, agent control architecture, optimization algorithms, and agent development environments. ABM application papers in behavior simulation and policy-making are reviewed with regard to the agent decision-making details and model objectives. In addition, the potential future research directions in reinforcement learning implementation and agent control synchronization are highlighted. The review shows that the agent-based method has great potential to contribute to energy transition studies with its plug-and-play ability and distributed decision-making process

    Evolutionary approaches to optimisation in rough machining

    Get PDF
    This thesis concerns the use of Evolutionary Computation to optimise the sequence and selection of tools and machining parameters in rough milling applications. These processes are not automated in current Computer-Aided Manufacturing (CAM) software and this work, undertaken in collaboration with an industrial partner, aims to address this. Related research has mainly approached tool sequence optimisation using only a single tool type, and machining parameter optimisation of a single-tool sequence. In a real world industrial setting, tools with different geometrical profiles are commonly used in combination on rough machining tasks in order to produce components with complex sculptured surfaces. This work introduces a new representation scheme and search operators to support the use of the three most commonly used tool types: end mill, ball nose and toroidal. Using these operators, single-objective metaheuristic algorithms are shown to find near-optimal solutions, while surveying only a small number of tool sequences. For the first time, a multi-objective approach is taken to tool sequence optimisation. The process of ‘multi objectivisation’ is shown to offer two benefits: escaping local optima on deceptive multimodal search spaces and providing a selection of tool sequence alternatives to a machinist. The multi-objective approach is also used to produce a varied set of near-Pareto optimal solutions, offering different trade-offs between total machining time and total tooling costs, simultaneously optimising tool sequences and the cutting speeds of individual tools. A challenge for using computationally expensive CAM software, important for real world machining, is the time cost of evaluations. An asynchronous parallel evolutionary optimisation system is presented that can provide a significant speed up, even in the presence of heterogeneous evaluation times produced by variable length tool sequences. This system uses a distributed network of processors that could be easily and inexpensively implemented on existing commercial hardware, and accessible to even small workshops

    Cloud Computing Strategies for Enhancing Smart Grid Performance in Developing Countries

    Get PDF
    In developing countries, the awareness and development of Smart Grids are in the introductory stage and the full realisation needs more time and effort. Besides, the partially introduced Smart Grids are inefficient, unreliable, and environmentally unfriendly. As the global economy crucially depends on energy sustainability, there is a requirement to revamp the existing energy systems. Hence, this research work aims at cost-effective optimisation and communication strategies for enhancing Smart Grid performance on Cloud platforms

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    A rapid review on community connected microgrids

    Get PDF
    As the population of urban areas continues to grow, and construction of multi-unit developments surges in response, building energy use demand has increased accordingly and solutions are needed to offset electricity used from the grid. Renewable energy systems in the form of microgrids, and grid-connected solar PV-storage are considered primary solutions for powering residential developments. The primary objectives for commissioning such systems include significant electricity cost reductions and carbon emissions abatement. Despite the proliferation of renewables, the uptake of solar and battery storage systems in communities and multi-residential buildings are less researched in the literature, and many uncertainties remain in terms of providing an optimal solution. This literature review uses the rapid review technique, an industry and societal issue-based version of the systematic literature review, to identify the case for microgrids for multi-residential buildings and communities. The study describes the rapid review methodology in detail and discusses and examines the configurations and methodologies for microgrids

    Scientific Workflows: Moving Across Paradigms

    Get PDF
    Modern scientific collaborations have opened up the opportunity to solve complex problems that require both multidisciplinary expertise and large-scale computational experiments. These experiments typically consist of a sequence of processing steps that need to be executed on selected computing platforms. Execution poses a challenge, however, due to (1) the complexity and diversity of applications, (2) the diversity of analysis goals, (3) the heterogeneity of computing platforms, and (4) the volume and distribution of data. A common strategy to make these in silico experiments more manageable is to model them as workflows and to use a workflow management system to organize their execution. This article looks at the overall challenge posed by a new order of scientific experiments and the systems they need to be run on, and examines how this challenge can be addressed by workflows and workflow management systems. It proposes a taxonomy of workflow management system (WMS) characteristics, including aspects previously overlooked. This frames a review of prevalent WMSs used by the scientific community, elucidates their evolution to handle the challenges arising with the emergence of the “fourth paradigm,” and identifies research needed to maintain progress in this area
    corecore