7 research outputs found

    Predicting Solar Irradiance using Time Series Neural Networks

    Get PDF
    Increasing the accuracy of prediction improves the performance of photovoltaic systems and alleviates the effects of intermittence on the systems stability. A Nonlinear Autoregressive Network with Exogenous Inputs (NARX) approach was applied to the Vichy-Rolla National Airport\u27s photovoltaic station. The proposed model uses several inputs (e.g. time, day of the year, sky cover, pressure, and wind speed) to predict hourly solar irradiance. Data obtained from the National Solar Radiation Database (NSRDB) was used to conduct simulation experiments. These simulations validate the use of the proposed model for short-term predictions. Results show that the NARX neural network notably outperformed the other models and is better than the linear regression model. The use of additional meteorological variables, particularly sky cover, can further improve the prediction performance

    Two-Tier Prediction of Solar Power Generation with Limited Sensing Resource

    Full text link
    This paper considers a typical solar installations scenario with limited sensing resources. In the literature, there exist either day-ahead solar generation prediction methods with limited accuracy, or high accuracy short timescale methods that are not suitable for applications requiring longer term prediction. We propose a two-tier (global-tier and local-tier) prediction method to improve accuracy for long term (24 hour) solar generation prediction using only the historical power data. In global-tier, we examine two popular heuristic methods: weighted k-Nearest Neighbors (k-NN) and Neural Network (NN). In local-tier, the global-tier results are adaptively updated using real-time analytical residual analysis. The proposed method is validated using the UCLA Microgrid with 35kW of solar generation capacity. Experimental results show that the proposed two-tier prediction method achieves higher accuracy compared to day-ahead predictions while providing the same prediction length. The difference in the overall prediction performance using either weighted k-NN based or NN based in the global-tier are carefully discussed and reasoned. Case studies with a typical sunny day and a cloudy day are carried out to demonstrate the effectiveness of the proposed two-tier predictions

    The state-of-the-art progress in cloud detection, identification, and tracking approaches: a systematic review

    Get PDF
    A cloud is a mass of water vapor floating in the atmosphere. It is visible from the ground and can remain at a variable height for some time. Clouds are very important because their interaction with the rest of the atmosphere has a decisive influence on weather, for instance by sunlight occlusion or by bringing rain. Weather denotes atmosphere behavior and is determinant in several human activities, such as agriculture or energy capture. Therefore, cloud detection is an important process about which several methods have been investigated and published in the literature. The aim of this paper is to review some of such proposals and the papers that have been analyzed and discussed can be, in general, classified into three types. The first one is devoted to the analysis and explanation of clouds and their types, and about existing imaging systems. Regarding cloud detection, dealt with in a second part, diverse methods have been analyzed, i.e., those based on the analysis of satellite images and those based on the analysis of images from cameras located on Earth. The last part is devoted to cloud forecast and tracking. Cloud detection from both systems rely on thresholding techniques and a few machine-learning algorithms. To compute the cloud motion vectors for cloud tracking, correlation-based methods are commonly used. A few machine-learning methods are also available in the literature for cloud tracking, and have been discussed in this paper too

    Cloud motion estimation for short term solar irradiation prediction

    No full text

    Intra-hour solar forecasting for photovoltaic systems integration in weak electric grids

    Get PDF
    La tesis "Intra-hour solar forecasting for photovoltaic systems integration in weak electric grids" estudia la problemática de la variabilidad del recurso solar en la integración de sistemas fotovoltaicos en redes eléctricas débiles, que es el principal obstáculo que enfrenta esta tecnología para un despliegue masivo. Por un lado, se desarrolla un sistema de predicción de energía fotovoltaica intra-horario basado en dos cámaras de cielo capaz de predecir las rampas de producción causadas por el efecto de las nubes. El sistema hace uso de técnicas de procesamiento de imágenes y deep learning para identificar las nubes y predecir cuando éstas afectaran a la producción de las plantas fotovoltaicas cercanas. Por otro lado, se evalúa el potencial fotovoltaico de las Islas Canarias haciendo uso de técnicas de Big Data. También se estudian los problemas de integración derivados de la inclusión de energía fotovoltaica en las redes eléctricas de distribución, proponiendo un algoritmo para la optimización del control de los inversores fotovoltaicos

    Redes de sensores para la predicción solar a corto plazo en el marco de las microgrids y smartcities

    Get PDF
    En los últimos años, la potencia fotovoltaica instalada global ha crecido notablemente, llegando a superar el 20\% de la demanda energética en varios países. Esto se debe en parte a la reducción de costes de esta tecnología y la política de promover el uso de energías renovables. La producción de la energía fotovoltaica depende directamente de los niveles de radiación solar incidente sobre los paneles, que se trata de un recurso externo y variable. La irradiancia solar fluctúa principalmente por dos factores, pero la mayor variabilidad está asociada a la presencia de nubes, y estas variaciones tienen una duración que va desde unos pocos segundos hasta varios minutos. Debido al funcionamiento del mercado eléctrico y a la nula inercia en la producción energética de estos sistemas, los productores fotovoltaicos necesitan de predicciones precisas en diferentes horizontes temporales con el fin de maximizar la energía ofertada en el mercado, incrementando de este modo la integración de la misma. Por otra parte, también necesitan datos en tiempo real para una gestión más óptima del sistema fotovoltaico. Las predicciones a corto plazo se emplean para el sistema de control y balance de la producción energética, y a medio plazo para la programación y venta de energía en el mercado eléctrico, sin embargo, los sistemas actuales de predicción son escasos y caros para ser contemplados en sistemas de media y pequeña escala. Numerosos estudios han intentado cubrir la necesidad de predicción a corto plazo estimando espacio-temporalmente el campo de irradiancia con cámaras de cielo completo e imágenes de satélite, sin embargo, estos métodos están limitados por la problemática de la conversión de imagen a irradiancia. Investigadores influyentes en este área creen que las redes de sensores de irradiancia pueden jugar un papel fundamental en este contexto, ofreciendo en tiempo real varias medidas espaciales y con la alta resolución temporal necesaria. La información espacio-temporal capturada por la red permitiría estimar el campo de irradiancia y analizar su evolución, capturando incluso los eventos más rápidos. Las tecnologías inalámbricas han evolucionado en el marco de las ciudades inteligentes y el internet de las cosas, apareciendo tecnologías que se adecuan a diferentes escenarios. El interés mostrado en estos sistemas ha producido un abaratamiento de los módulos de comunicaciones inalámbricas, gracias a la economía de escala. Las redes de sensores podrían beneficiarse de estas tecnologías inalámbricas, ofreciendo a su vez un ahorro en costes del despliegue respecto a su equivalente cableado y una mayor flexibilidad para integrar nuevos nodos en la red. Por ello, esta tesis se pretende estudiar el potencial de estas redes inalámbricas como fuente de información crítica para la gestión a corto plazo de sistemas fotovoltaicos, y la explotación de los datos de la misma, implementando y desarrollando algoritmos con estos datos con fines de predicción de la producción y para la operación óptima de estos sistemas.In recent years, global installed photovoltaic power has grown significantly, exceeding 20% of energy demand in several countries. This is partly due to the cost reduction of this technology and the policy of promoting the use of renewable energies. Photovoltaic energy production depends directly on the levels of solar radiation incident on the panels, which is an external and variable resource. Solar irradiance fluctuates mainly due to two factors, but the greatest variability is associated with the presence of clouds, and these variations range in duration from a few seconds to several minutes. Due to the functioning of the electricity market and the lack of inertia in the energy production of these systems, PV producers need accurate forecasts at different time horizons in order to maximize the energy offered in the market, thus increasing the integration of the same. On the other hand, they also need real-time data for more optimal PV system management. Short-term forecasts are used for the energy production control and balancing system, and medium-term forecasts are used for scheduling and selling energy in the electricity market, however, current forecasting systems are scarce and expensive to be contemplated in medium and small-scale systems. Numerous studies have attempted to address the need for short-term forecasting by estimating the spatio-temporal irradiance field with full-sky cameras and satellite imagery, however, these methods are limited by the problems of image-to-irradiance conversion. Influential researchers in this area believe that irradiance sensor networks can play a key role in this context, providing various spatial measurements in real time and with the necessary high temporal resolution. The spatio-temporal information captured by the network would allow estimating the irradiance field and analyzing its evolution, capturing even the fastest events. Wireless technologies have evolved within the framework of smart cities and the internet of things, with the emergence of technologies that are suitable for different scenarios. The interest shown in these systems has led to a reduction in the cost of wireless communications modules, thanks to economies of scale. Sensor networks could benefit from these wireless technologies, offering savings in deployment costs compared to their wired equivalent and greater flexibility to integrate new nodes in the network. Thus, this thesis aims to study the potential of these wireless networks as a source of critical information for the short-term management of photovoltaic systems, and the exploitation of the data from it, implementing and developing algorithms with this data for production prediction purposes and for the optimal operation of these systems
    corecore