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Abstract 

Increasing the accuracy of prediction improves the performance of photovoltaic systems and alleviates the effects of intermittence on 
the systems stability. A Nonlinear Autoregressive Network with Exogenous Inputs (NARX) approach was applied to the Vichy-Rolla 
National Airport’s photovoltaic station. The proposed model uses several inputs (e.g. time, day of the year, sky cover, pressure, and 
wind speed) to predict hourly solar irradiance. Data obtained from the National Solar Radiation Database (NSRDB) was used to 
conduct simulation experiments. These simulations validate the use of the proposed model for short-term predictions. Results show 
that the NARX neural network notably outperformed the other models and is better than the linear regression model. The use of 
additional meteorological variables, particularly sky cover, can further improve the prediction performance. 

Keywords: Time Series Neural Network, NSRDB, NARX, 

1. Introduction

Photovoltaic systems have been tremendously improved in the past few years. These improvements include those mad at the 
operational level. These improvements have increased the amount of research focused on predicting solar energy. Predicting solar 
radiation increases the economic benefit and reduces the renewable energy expansion constraints. Thus, models are needed that can 
predict solar irradiation and improve the operations. A number of models are available that can estimate solar radiation. Both 
physical models and stochastic models are most commonly used for these tasks. Physical models are good fit to sun radiation based 
on its mean bias error (MBE) and root mean square error (RMSE) tests [1].  
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The physical model used in this study estimates sunrise and sunset times without using extra equations (as other physical models do). 
Starting by defining the declination δ and it was given for any day of the year as:  
 

360 ( 80)23.45 sin
365

o n        (1) 

 
where n is the day of the year, and 23.45° is the angle of the polar axis of the earth with the sun [10]. The indication took into account 
that angles north of the equator are positive; they are negative when located south of the equator. Figure 1 illustrates the declination 
at different times of the year. Time of solar noon can be calculated as: 
 

            12 60
15

L nt            (2)  

 
Where  is the longitude for the point of interest,  is the longitude at which the solar noon occurs relative to the local time 

zone, and (60 min/15°) is used because the earth needs 60 minutes to rotate 15 degrees. One essential connection exists between ф, δ, 
and ω. This relationship is to determine the position of the sun in term of α at a given location, time and date was defined as in the 
denominator of equation. Equation (3) was used to find the air mass coefficient (AM) to include the length of the path through the 
atmosphere. This path length is typically compared to a vertical path located at sea level. Therefore, the air mass was thus calculated 
as: 

1
sin sin cos cos cos

AM     (3) 

 
The sun radiation’s received energy of the sun radiation at a specific location, on a specific day and time, can be estimated by  

                  1367 (0.7)AMI               (4) 
 

This equation is used to calculate unity AM. Nevertheless, according to the physical model [1], a better fit to the observed data is 
given as:  

                     
0.678

1367 (0.7)AMI               (5) 

2. Prediction Using Neural Networks 

There are many studies on how to predict solar irradiation using neural networks. In the literature, Raidal Bese Function Networks 
was used to predict solar irradiance. However, in this paper, time series neural networks were used to perform the prediction. In this 
study, a data set (containing time series measurements) was taken from the National Renewable Energy Laboratory in Golden, 
Colorado. It was collected between January 1991 and December 2005, and contains 131,400 observations (year# = 8760 
observations). All observation were made at the Vichy National Airport in Rolla, MO. Variables were chosen in the data were chosen 
according to their variability. The data the information used are as in table 1. 
 

Table 1: Different Inputs of Neural Networks 
Experiment 1 Experiment 2 Experiment 3 

Day (from 1 to 365) Day (from 1 to 365) Day (from 1 to 365) 
Hour of the day (1 to 24) Hour of the day (1 to 24) Hour of the day (1 to 24) 
Azimuth angle (degrees) Azimuth angle (degrees) Azimuth angle (degrees) 
Zenith angle (degrees) Zenith angle (degrees) Zenith angle (degrees) 
 Wind speed  (mph) Wind speed (mph) 
 Wind direction  Wind direction 
  Temperature (C) 
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2.1 Visualizing Data and Preprocessing 
 
Solar irradiation was visualized in one year to determine if there is a correlation between the inputs and the output. Solar irradiations 
that were equal to zero were eliminated first. Doing so makes training data easier and aids in more readily identifying the neural 
network’s pattern. This data presented in Fig. 4. Here, large portion of the year had a solar irradiation of zero.  
 

 

Figure 1: Solar Irradiation in One Year 

Figure 2 depicts the data after the zero irradiation was removed. This data illustrates that days are longer during the summer than 
during the winter. After eliminating zero solar irradiation, all data points were normalized between -1 and 1 using the Matlab built-in 
function Mapminmax. This normalized data will use Mapminmax to de-normalize the data and present them in the output. 

 

Figure 2: Data after Zero Irradiation is removed 

 

2.2  Neural Network Design 

The structural design of the selected back propagation neural network is depicted in Fig, 3.  This design uses time delay to predict 
solar irradiation. A time delay neural network (TDNN) is a type of neural network. The primary aim of this type of networks is to 
figure on serial information. The TDNN units recognize options freelance of time-shift (i.e., sequence position) and are typically 
kind a part of a bigger pattern recognition system. They are most often used to change continuous audio into a stream of 
classified sound labels for speech recognition. A sign is increased with delayed copies as different inputs. The neural network is time-
shift invariant since it has no internal state [5].   This network is referred to as NARX (nonlinear autoregressive with external input). 
It is given previous values of a time series so that it can learn to predict future values. The input received from the feedback is known 
as the external (or exogenous) time series [2].  
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Figure 3. NARX Neural Network Architecture [10] 

3. Case Studies 

 3.1 Case 1: Predicting Solar Irradiation Using Three Variables 

Three variables were used in case 1 to predict irradiation:  hours, zenith angle, and Azimuth angle. Feedback from the output was 
also used. 

 

                                      Figure 4: MSE Error                                               Figure 5: The predicted output vs. the actual output   

 
This case gives very good result because the predicted output is matching the physical model. However, more cases were needed to 
make sure that this networks performance under the noise (shading conditions) was very accepted. The regression in Fig. 5 illustrates 
that the relationship between the predicted output and the actual output is approximately 1. Thus, the predicted output matches the 
actual output. Figure 4 illustrates that there is a small error comparing. It is oscillates around zero.  

 

3.2 Case 2: Predicting Solar Irradiation Using Five Variables 

Five variables were used in Case 2 to predict solar Irradiation: hours, zenith angle, Azimuth angle, wind speed, and wind direction. 
Feedback received from the output was also used.  
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                         Figure 6: MSE Error                                                 Figure 7: The predicted output vs. the actual output  

3.3 Case 3: Predicting Solar Irradiance Using Six Variables 

In these section different windows sizes which I used one back propagation training algorithm, as summarized in Table 2. A 
maximum number of epochs (1,0000) was used; the training goal value was 0. The Levenberg-Marquardt algorithm was used to 
reduce the error function. Overall, a window size of 3 is the best case where the smallest mean square error (MSE).  Thus, this 
windows size used was to evaluate additional test values and cases.  

 

 

                                          Figure 8: MSE Error                                             Figure 9: The predicted output vs. the actual output   

 
The predicted output was not better than that for either Case 1 or Case 2 because the temperature (which fluctuates) was included.  

4. Evaluating Different Window Sizes and Performance 

The network was evaluated under different window sizes (see Table 2). The mean square error was used to compare the experiments 
to one another. The best performance occurred when three previous values were used and the convergence point was reached faster 
than other cases.  
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Table 2. Summary of Five different Windows Sizes 

Algorithm Number of Neurons Hidden Layer Windows Size Output MSE 

Levenberg-Marquardt (trainlm) 21 2 5.7% 

Levenberg-Marquardt (trainlm) 21 3 2.2% 

Levenberg-Marquardt (trainlm) 21 4 7.6 % 

Levenberg-Marquardt (trainlm) 21 5 11.02 % 

Levenberg-Marquardt (trainlm) 21 6 15.33 % 

 

The MSE was used to evaluate all three cases (see Table 3).  Again, the use of three variables was found to yield the best 
performance because no strong correlation between temperature and irradiation exists (as in Case 3). 

Table 3, Performance Evaluation of the cases 
Case Number of Neurons Hidden Layer Window Size Output MSE 

Case 1 21 3 5.7 % 

Case 2 21 3 5.5 % 

Case 3 21 3 8.2 % 

5. Conclusions 

The completed back propagation neural network was successfully predicted the solar irradiation. Time series neural networks 
provided good predications as well. Three cases were conducted and tested. The output produced promising results. Different 
window sizes were tested. The best case occurred when three window sizes were used.  Future studies should be conducted in which 
three networks are evaluated meticulously and compares them to other linear regression approaches, and other types of neural 
networks.  
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