9 research outputs found

    Improved recursive constructing method of Reed-Muller codes

    Get PDF
    ไธ€่ˆฌๅฏนrEEd-MullEr็ ็š„้€’ๅฝ’ๆž„้€ ๆ–นๆณ•ๆ˜ฏๅฏน้•ฟ็ ่ฟ›่กŒ้€’ๅฝ’ๅˆ†่งฃ,็›ดๅˆฐไธ่ƒฝๅ†ๅˆ†่งฃไธบๆญข,ๅณๅ‡บ็Žฐๆ— ๅ†—ไฝ™็ ๅ’Œ้‡ๅค็ ๆ—ถ็ป“ๆŸๅˆ†่งฃใ€‚ๆๅ‡บไบ†ไธ€็ง้’ˆๅฏนrEEd-MullEr็ ็š„้€’ๅฝ’ๆž„้€ ๆ”น่ฟ›ๆ–นๆณ•,่ฏฅๆ”น่ฟ›ๆ–นๆณ•ๆฏ”ๅธธ่ง„ๆ–นๆณ•ๅœจ้€’ๅฝ’ๅˆ†่งฃ็š„ไธค็ซฏๅ‡ๆๆ—ฉไธ€ๆญฅ็ป“ๆŸๅฏน็ ๅญ—็š„ๅˆ†่งฃ,ๅณๅ‡บ็ŽฐๅŒๆญฃไบค็ ๅ’Œๅ•ๅฅ‡ๅถๆ ก้ชŒ็ ๆ—ถ็ป“ๆŸๅˆ†่งฃ,ๅนถๅฏนๅ•ๅฅ‡ๅถๆ ก้ชŒ็ ้‡‡็”จ็ณป็ปŸๅฝขๅผใ€‚ๅฏนไบŽๅŒๆญฃไบค็ ,ๅˆฉ็”จๅฟซ้€Ÿๅ“ˆ่พพ็Ž›ๅ˜ๆขๅฎž็Žฐๅฟซ้€Ÿ็š„ๆœ€ๅคงไผผ็„ถ่ฏ‘็ ;ๅฏนไบŽๅ•ๅฅ‡ๅถๆ ก้ชŒ็ ,ๅˆฉ็”จ่ฏฅ็ ็ณป็ปŸๅฝขๅผ็š„็‰นๆฎŠๆž„้€ ๅฎž็Žฐไบ†็ฎ€ๅŒ–็š„ๆœ€ๅคงไผผ็„ถ่ฏ‘็ ็ฎ—ๆณ•ใ€‚ๅฏนๆ”น่ฟ›็š„่ฏ‘็ ็ฎ—ๆณ•็š„ๅคๆ‚ๅบฆ่ฟ›่กŒไบ†่ฏฆ็ป†็š„ๅˆ†ๆž,ๅนถไธŽๅ…ถไป–ๅทฒๆœ‰็š„็ฎ—ๆณ•่ฟ›่กŒๅฏนๆฏ”,็ป“ๆžœ่กจๆ˜Ž,่ฏฅ็ฎ—ๆณ•ๅ…ทๆœ‰ๆ›ดไฝŽ็š„ๅคๆ‚ๅบฆ,ๅฐคๅ…ถๅฏนไบŽ้ซ˜็ ็Ž‡็š„็ ๅž‹ใ€‚ๆญคๅค–,ๆ€ง่ƒฝไปฟ็œŸ็ป“ๆžœ่กจๆ˜Ž,่ฏฅ่ฏ‘็ ็ฎ—ๆณ•ๅ…ทๆœ‰ๆ›ดไฝŽ็š„่ฏฏ็ ็Ž‡ใ€‚Reed-Muller code can be recursively decomposed and the decomposition is conventionally ended at repetition codes and non-redundancy codes,where repetition codes and non-redundancy codes cannot be decomposed further.In this paper,we propose a modified recursive structure of Reed-Muller code in which the recursive decompositions are ended one step earlier,i.e.decompositions are ended at dual-orthogonal codes or single parity check codes.Moreover,for single parity check code,the systematic form is used.In the decoding algorithm,we use fast Hadamard transform to simplify the maximum likelihood decoding of dual-orthogonal code.We also use simplified maximum likelihood decoder to decode the systematic single parity check code through its special structure.We analyze the decoding complexity of the proposed decoding algorithm and compare the complexity with two other existing algorithms.The analysis shows that the proposed algorithm has lower complexity,especially for the high-rate codes.In addition,the simulation results indicate that the proposed algorithm decreases the bit-error rate slightly.็ฆๅปบ็œ่‡ช็„ถ็ง‘ๅญฆๅŸบ้‡‘(2013J01256); ๅ›ฝๅฎถ่‡ช็„ถ็ง‘ๅญฆๅŸบ้‡‘(61271241)~

    Soft-decision decoding techniques for linear block codes and their error performance analysis

    Get PDF
    The first paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. The second paper derives an upper bound on the probability of block error for multilevel concatenated codes (MLCC). The bound evaluates difference in performance for different decompositions of some codes. The third paper investigates the bit error probability code for maximum likelihood decoding of binary linear codes. The fourth and final paper included in this report is concerns itself with the construction of multilevel concatenated block modulation codes using a multilevel concatenation scheme for the frequency non-selective Rayleigh fading channel

    A Modified pqsigRM: RM Code-Based Signature Scheme

    Get PDF
    We propose a novel signature scheme based on a modified Reed--Muller (RM) code, which reduces the signing complexity and key size compared to existing code-based signature schemes. This cheme is called as the modified pqsigRM, and corresponds to an improvement of pqsigRM, the proposal submitted to NIST. Courtois, Finiasz, and Sendrier (CFS) proposed a code-based signature scheme using the Goppa codes based on a full domain hash approach. However, owing to the properties of Goppa codes, the CFS signature scheme has drawbacks such as signing complexity and large key size. We overcome these disadvantages of the CFS signature scheme using partially permuted RM code and its decoding, which finds a near codeword for any received vector. Using a partially permuted RM code, the signature scheme resists various known attacks on the RM code-based cryptography. Additionally, we further modify the RM codes by row insertion/deletion of the generator matrix and thereafter resolve the problems reported in the post-quantum cryptography forum by NIST, such as the Hamming weight distribution of the public code

    Enhanced pqsigRM: Code-Based Digital Signature Scheme with Short Signature and Fast Verification for Post-Quantum Cryptography

    Get PDF
    We present a novel code-based digital signature scheme, called Enhanced pqsigRM for post-quantum cryptography (PQC). This scheme is based on modified Reedโ€“Muller (RM) codes, which modified RM codes with several security problems. Enhanced pqsigRM is a strengthened version of pqsigRM, which was submitted to NIST PQC standardization in round 1. The proposed scheme has the advantage of short signature size, fast verification cycles. For 128 bits of classical security, the signature size of the proposed scheme is 1032 bytes, which corresponds to 0.42 times that of Crystals-Dilithium, and the number of median verification cycles is 235,656, which is smaller than that of Crystals-Dilithium. Also, we use public codes, called modified RM codes, that are more difficult to distinguish from random codes. We use (U,U + V )-codes with high-dimensional hull to make these. Using modified RM codes, the proposed signature scheme resists various known attacks on RM-code-based cryptography. The proposed decoder samples from coset elements with small Hamming weight for any given syndrome and efficiently finds such elements

    ์ •๋ณด ๋ณดํ˜ธ ๊ธฐ๊ณ„ ํ•™์Šต์˜ ์•”ํ˜ธํ•™ ๊ธฐ๋ฐ˜ ๊ธฐ์ˆ : ๊ทผ์‚ฌ ๋™ํ˜• ์•”ํ˜ธ์™€ ๋ถ€ํ˜ธ ๊ธฐ๋ฐ˜ ์•”ํ˜ธ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ๋…ธ์ข…์„ .In this dissertation, three main contributions are given as; i) a protocol of privacy-preserving machine learning using network resources, ii) the development of approximate homomorphic encryption that achieves less error and high-precision bootstrapping algorithm without compromising performance and security, iii) the cryptanalysis and the modification of code-based cryptosystems: cryptanalysis on IKKR cryptosystem and modification of the pqsigRM, a digital signature scheme proposed to the post-quantum cryptography (PQC) standardization of National Institute of Standards and Technology (NIST). The recent development of machine learning, cloud computing, and blockchain raises a new privacy problem; how can one outsource computation on confidential data? Moreover, as research on quantum computers shows success, the need for PQC is also emerging. Multi-party computation (MPC) is the cryptographic protocol that makes computation on data without revealing it. Since MPC is designed based on homomorphic encryption (HE) and PQC, research on designing efficient and safe HE and PQC is actively being conducted. First, I propose a protocol for privacy-preserving machine learning (PPML) that replaces bootstrapping of homomorphic encryption with network resources. In general, the HE ciphertext has a limited depth of circuit that can be calculated, called the level of a ciphertext. We call bootstrapping restoring the level of ciphertext that has exhausted its level through a method such as homomorphic decryption. Bootstrapping of homomorphic encryption is, in general, very expensive in time and space. However, when deep computations like deep learning are performed, it is required to do bootstrapping. In this protocol, both the client's message and servers' intermediate values are kept secure, while the client's computation and communication complexity are light. Second, I propose an improved bootstrapping algorithm for the CKKS scheme and a method to reduce the error by homomorphic operations in the CKKS scheme. The Cheon-Kim-Kim-Song (CKKS) scheme (Asiacrypt '17) is one of the highlighted fully homomorphic encryption (FHE) schemes as it is efficient to deal with encrypted real numbers, which are the usual data type for many applications such as machine learning. However, the precision drop due to the error growth is a drawback of the CKKS scheme for data processing. I propose a method to achieve high-precision approximate FHE using the following two methods .First, I apply the signal-to-noise ratio (SNR) concept and propose methods to maximize SNR by reordering homomorphic operations in the CKKS scheme. For that, the error variance is minimized instead of the upper bound of error when we deal with the encrypted data. Second, from the same perspective of minimizing error variance, I propose a new method to find the approximate polynomials for the CKKS scheme. The approximation method is especially applied to the CKKS scheme's bootstrapping, where we achieve bootstrapping with smaller error variance compared to the prior arts. In addition to the above variance-minimizing method, I cast the problem of finding an approximate polynomial for a modulus reduction into an L2-norm minimization problem. As a result, I find an approximate polynomial for the modulus reduction without using the sine function, which is the upper bound for the polynomial approximation of the modulus reduction. By using the proposed method, the constraint of q = O(m^{3/2}) is relaxed as O(m), and thus the level loss in bootstrapping can be reduced. The performance improvement by the proposed methods is verified by implementation over HE libraries, that is, HEAAN and SEAL. The implementation shows that by reordering homomorphic operations and using the proposed polynomial approximation, the reliability of the CKKS scheme is improved. Therefore, the quality of services of various applications using the proposed CKKS scheme, such as PPML, can be improved without compromising performance and security. Finally, I propose an improved code-based signature scheme and cryptanalysis of code-based cryptosystems. A novel code-based signature scheme with small parameters and an attack algorithm on recent code-based cryptosystems are presented in this dissertation. This scheme is based on a modified Reed-Muller (RM) code, which reduces the signing complexity and key size compared with existing code-based signature schemes. The proposed scheme has the advantage of the pqsigRM decoder and uses public codes that are more difficult to distinguish from random codes. I use (U, U+V) -codes with the high-dimensional hull to overcome the disadvantages of code-based schemes. The proposed a decoder which efficiently samples from coset elements with small Hamming weight for any given syndrome. The proposed signature scheme resists various known attacks on RM code-based cryptography. For 128 bits of classical security, the signature size is 4096 bits, and the public key size is less than 1 MB. Recently, Ivanov, Kabatiansky, Krouk, and Rumenko (IKKR) proposed three new variants of the McEliece cryptosystem (CBCrypto 2020, affiliated with Eurocrypt 2020). This dissertation shows that one of the IKKR cryptosystems is equal to the McEliece cryptosystem. Furthermore, a polynomial-time attack algorithm for the other two IKKR cryptosystems is proposed. The proposed attack algorithm utilizes the linearity of IKKR cryptosystems. Also, an implementation of the IKKR cryptosystems and the proposed attack is given. The proposed attack algorithm finds the plaintext within 0.2 sec, which is faster than the elapsed time for legitimate decryption.๋ณธ ๋…ผ๋ฌธ์€ ํฌ๊ฒŒ ๋‹ค์Œ์˜ ์„ธ ๊ฐ€์ง€์˜ ๊ธฐ์—ฌ๋ฅผ ํฌํ•จํ•œ๋‹ค. i) ๋„คํŠธ์›Œํฌ๋ฅผ ํ™œ์šฉํ•ด์„œ ์ •๋ณด ๋ณดํ˜ธ ๋”ฅ๋Ÿฌ๋‹์„ ๊ฐœ์„ ํ•˜๋Š” ํ”„๋กœํ† ์ฝœ ii) ๊ทผ์‚ฌ ๋™ํ˜• ์•”ํ˜ธ์—์„œ ๋ณด์•ˆ์„ฑ๊ณผ ์„ฑ๋Šฅ์˜ ์†ํ•ด ์—†์ด ์—๋Ÿฌ๋ฅผ ๋‚ฎ์ถ”๊ณ  ๋†’์€ ์ •ํ™•๋„๋กœ ๋ถ€ํŠธ์ŠคํŠธ๋ž˜ํ•‘ ํ•˜๋Š” ๋ฐฉ๋ฒ• iii) IKKR ์•”ํ˜ธ ์‹œ์Šคํ…œ๊ณผ pqsigRM ๋“ฑ ๋ถ€ํ˜ธ ๊ธฐ๋ฐ˜ ์•”ํ˜ธ๋ฅผ ๊ณต๊ฒฉํ•˜๋Š” ๋ฐฉ๋ฒ•๊ณผ ํšจ์œจ์ ์ธ ๋ถ€ํ˜ธ ๊ธฐ๋ฐ˜ ์ „์ž ์„œ๋ช… ์‹œ์Šคํ…œ. ๊ทผ๋ž˜์˜ ๊ธฐ๊ณ„ํ•™์Šต๊ณผ ๋ธ”๋ก์ฒด์ธ ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์œผ๋กœ ์ธํ•ด์„œ ๊ธฐ๋ฐ€ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์—ฐ์‚ฐ์„ ์–ด๋–ป๊ฒŒ ์™ธ์ฃผํ•  ์ˆ˜ ์žˆ๋Š๋ƒ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ๋ณด์•ˆ ๋ฌธ์ œ๊ฐ€ ๋Œ€๋‘๋˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ์–‘์ž ์ปดํ“จํ„ฐ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์„ฑ๊ณต์„ ๊ฑฐ๋“ญํ•˜๋ฉด์„œ, ์ด๋ฅผ ์ด์šฉํ•œ ๊ณต๊ฒฉ์— ์ €ํ•ญํ•˜๋Š” ํฌ์ŠคํŠธ ์–‘์ž ์•”ํ˜ธ์˜ ํ•„์š”์„ฑ ๋˜ํ•œ ์ปค์ง€๊ณ  ์žˆ๋‹ค. ๋‹ค์ž๊ฐ„ ์ปดํ“จํŒ…์€ ๋ฐ์ดํ„ฐ๋ฅผ ๊ณต๊ฐœํ•˜์ง€ ์•Š๊ณ  ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ์•”ํ˜ธํ•™์  ํ”„๋กœํ† ์ฝœ์˜ ์ด์นญ์ด๋‹ค. ๋‹ค์ž๊ฐ„ ์ปดํ“จํŒ…์€ ๋™ํ˜• ์•”ํ˜ธ์™€ ํฌ์ŠคํŠธ ์–‘์ž ์•”ํ˜ธ์— ๊ธฐ๋ฐ˜ํ•˜๊ณ  ์žˆ์œผ๋ฏ€๋กœ, ํšจ์œจ์ ์ธ ๋™ํ˜• ์•”ํ˜ธ์™€ ํฌ์ŠคํŠธ ์–‘์ž ์•”ํ˜ธ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํ•˜๊ฒŒ ์ˆ˜ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๋™ํ˜• ์•”ํ˜ธ๋Š” ์•”ํ˜ธํ™”๋œ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์—ฐ์‚ฐ์ด ๊ฐ€๋Šฅํ•œ ํŠน์ˆ˜ํ•œ ์•”ํ˜ธํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ๋™ํ˜• ์•”ํ˜ธ์˜ ์•”ํ˜ธ๋ฌธ์— ๋Œ€ํ•ด์„œ ์ˆ˜ํ–‰ ๊ฐ€๋Šฅํ•œ ์—ฐ์‚ฐ์˜ ๊นŠ์ด๊ฐ€ ์ •ํ•ด์ ธ ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ์•”ํ˜ธ๋ฌธ์˜ ๋ ˆ๋ฒจ์ด๋ผ๊ณ  ์นญํ•œ๋‹ค. ๋ ˆ๋ฒจ์„ ๋ชจ๋‘ ์†Œ๋น„ํ•œ ์•”ํ˜ธ๋ฌธ์˜ ๋ ˆ๋ฒจ์„ ๋‹ค์‹œ ๋ณต์›ํ•˜๋Š” ๊ณผ์ •์„ ๋ถ€ํŠธ์ŠคํŠธ๋ž˜ํ•‘ (bootstrapping)์ด๋ผ๊ณ  ์นญํ•œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ๋ถ€ํŠธ์ŠคํŠธ๋ž˜ํ•‘์€ ๋งค์šฐ ์˜ค๋ž˜ ๊ฑธ๋ฆฌ๋Š” ์—ฐ์‚ฐ์ด๋ฉฐ ์‹œ๊ฐ„ ๋ฐ ๊ณต๊ฐ„ ๋ณต์žก๋„๊ฐ€ ํฌ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๋”ฅ๋Ÿฌ๋‹๊ณผ ๊ฐ™์ด ๊นŠ์ด๊ฐ€ ํฐ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒฝ์šฐ ๋ถ€ํŠธ์ŠคํŠธ๋ž˜ํ•‘์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ •๋ณด ๋ณดํ˜ธ ๊ธฐ๊ณ„ํ•™์Šต์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํ”„๋กœํ† ์ฝœ์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ํ”„๋กœํ† ์ฝœ์—์„œ๋Š” ์ž…๋ ฅ ๋ฉ”์‹œ์ง€์™€ ๋”๋ถˆ์–ด ์‹ ๊ฒฝ๋ง์˜ ์ค‘๊ฐ„๊ฐ’๋“ค ๋˜ํ•œ ์•ˆ์ „ํ•˜๊ฒŒ ๋ณดํ˜ธ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์—ฌ์ „ํžˆ ์‚ฌ์šฉ์ž์˜ ํ†ต์‹  ๋ฐ ์—ฐ์‚ฐ ๋ณต์žก๋„๋Š” ๋‚ฎ๊ฒŒ ์œ ์ง€๋œ๋‹ค. Cheon, Kim, Kim ๊ทธ๋ฆฌ๊ณ  Song (CKKS)๊ฐ€ ์ œ์•ˆํ•œ ์•”ํ˜ธ ์‹œ์Šคํ…œ (Asiacrypt 17)์€ ๊ธฐ๊ณ„ํ•™์Šต ๋“ฑ์—์„œ ๊ฐ€์žฅ ๋„๋ฆฌ ์“ฐ์ด๋Š” ๋ฐ์ดํ„ฐ์ธ ์‹ค์ˆ˜๋ฅผ ํšจ์œจ์ ์œผ๋กœ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ๊ฐ€์žฅ ์ด‰๋ง๋ฐ›๋Š” ์™„์ „ ๋™ํ˜• ์•”ํ˜ธ ์‹œ์Šคํ…œ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์˜ค๋ฅ˜์˜ ์ฆํญ๊ณผ ์ „ํŒŒ๊ฐ€ CKKS ์•”ํ˜ธ ์‹œ์Šคํ…œ์˜ ๊ฐ€์žฅ ํฐ ๋‹จ์ ์ด๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์•„๋ž˜์˜ ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•˜์—ฌ CKKS ์•”ํ˜ธ ์‹œ์Šคํ…œ์˜ ์˜ค๋ฅ˜๋ฅผ ์ค„์ด๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๋ฉฐ, ์ด๋Š” ๊ทผ์‚ฌ ๋™ํ˜• ์•”ํ˜ธ์— ์ผ๋ฐ˜ํ™”ํ•˜์—ฌ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฒซ์งธ, ์‹ ํ˜ธ ๋Œ€๋น„ ์žก์Œ ๋น„ (signal-to-noise ratio, SNR)์˜ ๊ฐœ๋…์„ ๋„์ž…ํ•˜์—ฌ, SNR๋ฅผ ์ตœ๋Œ€ํ™”ํ•˜๋„๋ก ์—ฐ์‚ฐ์˜ ์ˆœ์„œ๋ฅผ ์žฌ์กฐ์ •ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๊ธฐ ์œ„ํ•ด์„œ๋Š”, ์˜ค๋ฅ˜์˜ ์ตœ๋Œ€์น˜ ๋Œ€์‹  ๋ถ„์‚ฐ์ด ์ตœ์†Œํ™”๋˜์–ด์•ผ ํ•˜๋ฉฐ, ์ด๋ฅผ ๊ด€๋ฆฌํ•ด์•ผ ํ•œ๋‹ค. ๋‘˜์งธ, ์˜ค๋ฅ˜์˜ ๋ถ„์‚ฐ์„ ์ตœ์†Œํ™”ํ•œ๋‹ค๋Š” ๊ฐ™์€ ๊ด€์ ์—์„œ ์ƒˆ๋กœ์šด ๋‹คํ•ญ์‹ ๊ทผ์‚ฌ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ๊ทผ์‚ฌ ๋ฐฉ๋ฒ•์€ ํŠนํžˆ, CKKS ์•”ํ˜ธ ์‹œ์Šคํ…œ์˜ ๋ถ€ํŠธ์ŠคํŠธ๋ž˜ํ•‘์— ์ ์šฉ๋˜์—ˆ์œผ๋ฉฐ, ์ข…๋ž˜ ๊ธฐ์ˆ ๋ณด๋‹ค ๋” ๋‚ฎ์€ ์˜ค๋ฅ˜๋ฅผ ๋‹ฌ์„ฑํ•œ๋‹ค. ์œ„์˜ ๋ฐฉ๋ฒ•์— ๋”ํ•˜์—ฌ, ๊ทผ์‚ฌ ๋‹คํ•ญ์‹์„ ๊ตฌํ•˜๋Š” ๋ฌธ์ œ๋ฅผ L2-norm ์ตœ์†Œํ™” ๋ฌธ์ œ๋กœ ์น˜ํ™˜ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด์„œ ์‚ฌ์ธ ํ•จ์ˆ˜์˜ ๋„์ž… ์—†์ด ๊ทผ์‚ฌ ๋‹คํ•ญ์‹์„ ๊ตฌํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋ฉด, q=O(m^{3/2})๋ผ๋Š” ์ œ์•ฝ์„ q=O(m)์œผ๋กœ ์ค„์ผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ถ€ํŠธ์ŠคํŠธ๋ž˜ํ•‘์— ํ•„์š”ํ•œ ๋ ˆ๋ฒจ ์†Œ๋ชจ๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค. ์„ฑ๋Šฅ ํ–ฅ์ƒ์€ HEAAN๊ณผ SEAL ๋“ฑ์˜ ๋™ํ˜• ์•”ํ˜ธ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ํ™œ์šฉํ•œ ๊ตฌํ˜„์„ ํ†ตํ•ด ์ฆ๋ช…ํ–ˆ์œผ๋ฉฐ, ๊ตฌํ˜„์„ ํ†ตํ•ด์„œ ์—ฐ์‚ฐ ์žฌ์ •๋ ฌ๊ณผ ์ƒˆ๋กœ์šด ๋ถ€ํŠธ์ŠคํŠธ๋ž˜ํ•‘์ด CKKS ์•”ํ˜ธ ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒํ•จ์„ ํ™•์ธํ–ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณด์•ˆ์„ฑ๊ณผ ์„ฑ๋Šฅ์˜ ํƒ€ํ˜‘ ์—†์ด ๊ทผ์‚ฌ ๋™ํ˜• ์•”ํ˜ธ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์„œ๋น„์Šค์˜ ์งˆ์„ ํ–ฅ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค. ์–‘์ž ์ปดํ“จํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ „ํ†ต์ ์ธ ๊ณต๊ฐœํ‚ค ์•”ํ˜ธ๋ฅผ ๊ณต๊ฒฉํ•˜๋Š” ํšจ์œจ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๊ณต๊ฐœ๋˜๋ฉด์„œ, ํฌ์ŠคํŠธ ์–‘์ž ์•”ํ˜ธ์— ๋Œ€ํ•œ ํ•„์š”์„ฑ์ด ์ฆ๋Œ€ํ–ˆ๋‹ค. ๋ถ€ํ˜ธ ๊ธฐ๋ฐ˜ ์•”ํ˜ธ๋Š” ํฌ์ŠคํŠธ ์–‘์ž ์•”ํ˜ธ๋กœ์จ ๋„๋ฆฌ ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ์ž‘์€ ํ‚ค ํฌ๊ธฐ๋ฅผ ๊ฐ–๋Š” ์ƒˆ๋กœ์šด ๋ถ€ํ˜ธ ๊ธฐ๋ฐ˜ ์ „์ž ์„œ๋ช… ์‹œ์Šคํ…œ๊ณผ ๋ถ€ํ˜ธ ๊ธฐ๋ฐ˜ ์•”ํ˜ธ๋ฅผ ๊ณต๊ฒฉํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ๋…ผ๋ฌธ์— ์ œ์•ˆ๋˜์–ด ์žˆ๋‹ค. pqsigRM์ด๋ผ ๋ช…๋ช…ํ•œ ์ „์ž ์„œ๋ช… ์‹œ์Šคํ…œ์ด ๊ทธ๊ฒƒ์ด๋‹ค. ์ด ์ „์ž ์„œ๋ช… ์‹œ์Šคํ…œ์€ ์ˆ˜์ •๋œ Reed-Muller (RM) ๋ถ€ํ˜ธ๋ฅผ ํ™œ์šฉํ•˜๋ฉฐ, ์„œ๋ช…์˜ ๋ณต์žก๋„์™€ ํ‚ค ํฌ๊ธฐ๋ฅผ ์ข…๋ž˜ ๊ธฐ์ˆ ๋ณด๋‹ค ๋งŽ์ด ์ค„์ธ๋‹ค. pqsigRM์€ hull์˜ ์ฐจ์›์ด ํฐ (U, U+V) ๋ถ€ํ˜ธ์™€ ์ด์˜ ๋ณตํ˜ธํ™”๋ฅผ ์ด์šฉํ•˜์—ฌ, ์„œ๋ช…์—์„œ ํฐ ์ด๋“์ด ์žˆ๋‹ค. ์ด ๋ณตํ˜ธํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ฃผ์–ด์ง„ ๋ชจ๋“  ์ฝ”์…‹ (coset)์˜ ์›์†Œ์— ๋Œ€ํ•˜์—ฌ ์ž‘์€ ํ—ค๋ฐ ๋ฌด๊ฒŒ๋ฅผ ๊ฐ–๋Š” ์›์†Œ๋ฅผ ๋ฐ˜ํ™˜ํ•œ๋‹ค. ๋˜ํ•œ, ์ˆ˜์ •๋œ RM ๋ถ€ํ˜ธ๋ฅผ ์ด์šฉํ•˜์—ฌ, ์•Œ๋ ค์ง„ ๋ชจ๋“  ๊ณต๊ฒฉ์— ์ €ํ•ญํ•œ๋‹ค. 128๋น„ํŠธ ์•ˆ์ •์„ฑ์— ๋Œ€ํ•ด์„œ ์„œ๋ช…์˜ ํฌ๊ธฐ๋Š” 4096 ๋น„ํŠธ์ด๊ณ , ๊ณต๊ฐœ ํ‚ค์˜ ํฌ๊ธฐ๋Š” 1MB๋ณด๋‹ค ์ž‘๋‹ค. ์ตœ๊ทผ, Ivanov, Kabatiansky, Krouk, ๊ทธ๋ฆฌ๊ณ  Rumenko (IKKR)๊ฐ€ McEliece ์•”ํ˜ธ ์‹œ์Šคํ…œ์˜ ์„ธ ๊ฐ€์ง€ ๋ณ€ํ˜•์„ ๋ฐœํ‘œํ–ˆ๋‹ค (CBCrypto 2020, Eurocrypt 2020์™€ ํ•จ๊ป˜ ์ง„ํ–‰). ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” IKKR ์•”ํ˜ธ ์‹œ์Šคํ…œ์ค‘ ํ•˜๋‚˜๊ฐ€ McEliece ์•”ํ˜ธ ์‹œ์Šคํ…œ๊ณผ ๋™์น˜์ž„์„ ์ฆ๋ช…ํ•œ๋‹ค. ๋˜ํ•œ ๋‚˜๋จธ์ง€ IKKR ์•”ํ˜ธ ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๋‹คํ•ญ ์‹œ๊ฐ„ ๊ณต๊ฒฉ์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๊ณต๊ฒฉ์€ IKKR ์•”ํ˜ธ ์‹œ์Šคํ…œ์˜ ์„ ํ˜•์„ฑ์„ ํ™œ์šฉํ•œ๋‹ค. ๋˜ํ•œ, ์ด ๋…ผ๋ฌธ์€ ์ œ์•ˆํ•œ ๊ณต๊ฒฉ์˜ ๊ตฌํ˜„์„ ํฌํ•จํ•˜๋ฉฐ, ์ œ์•ˆ๋œ ๊ณต๊ฒฉ์€ 0.2์ดˆ ์ด๋‚ด์— ๋ฉ”์‹œ์ง€๋ฅผ ๋ณต์›ํ•˜๊ณ , ์ด๋Š” ์ •์ƒ์ ์ธ ๋ณตํ˜ธํ™”๋ณด๋‹ค ๋น ๋ฅธ ์†๋„์ด๋‹ค.Contents Abstract i Contents iv List of Tables ix List of Figures xi 1 Introduction 1 1.1 Homomorphic Encryption and Privacy-Preserving Machine Learning 4 1.2 High-Precision CKKS Scheme and Its Bootstrapping 5 1.2.1 Near-Optimal Bootstrapping of the CKKS Scheme Using Least Squares Method 6 1.2.2 Variance-Minimizing and Optimal Bootstrapping of the CKKS Scheme 8 1.3 Efficient Code-Based Signature Scheme and Cryptanalysis of the Ivanov-Kabatiansky-Krouk-Rumenko Cryptosystems 10 1.3.1 Modified pqsigRM: An Efficient Code-Based Signature Scheme 11 1.3.2 Ivanov-Kabatiansky-Krouk-Rumenko Cryptosystems and Its Equality 13 1.4 Organization of the Dissertation 14 2 Preliminaries 15 2.1 Basic Notation 15 2.2 Privacy-Preserving Machine Learning and Security Terms 16 2.2.1 Privacy-Preserving Machine Learning and Security Terms 16 2.2.2 Privacy-Preserving Machine Learning 17 2.3 The CKKS Scheme and Its Bootstrapping 18 2.3.1 The CKKS Scheme 18 2.3.2 CKKS Scheme in RNS 22 2.3.3 Bootstrapping of the CKKS Scheme 24 2.3.4 Statistical Characteristics of Modulus Reduction and Failure Probability of Bootstrapping of the CKKS Scheme 26 2.4 Approximate Polynomial and Signal-to-Noise Perspective for Approximate Homomorphic Encryption 27 2.4.1 Chebyshev Polynomials 27 2.4.2 Signal-to-Noise Perspective of the CKKS Scheme 28 2.5 Preliminary for Code-Based Cryptography 29 2.5.1 The McEliece Cryptosystem 29 2.5.2 CFS Signature Scheme 30 2.5.3 ReedMuller Codes and Recursive Decoding 31 2.5.4 IKKR Cryptosystems 33 3 Privacy-Preserving Machine Learning via FHEWithout Bootstrapping 37 3.1 Introduction 37 3.2 Information Theoretic Secrecy and HE for Privacy-Preserving Machine Learning 38 3.2.1 The Failure Probability of Ordinary CKKS Bootstrapping 39 3.3 Comparison With Existing Methods 43 3.3.1 Comparison With the Hybrid Method 43 3.3.2 Comparison With FHE Method 44 3.4 Comparison for Evaluating Neural Network 45 4 High-Precision Approximate Homomorphic Encryption and Its Bootstrapping by Error Variance Minimization and Convex Optimization 50 4.1 Introduction 50 4.2 Optimization of Error Variance in the Encrypted Data 51 4.2.1 Tagged Information for Ciphertext 52 4.2.2 WorstCase Assumption 53 4.2.3 Error in Homomorphic Operations of the CKKS Scheme 54 4.2.4 Reordering Homomorphic Operations 59 4.3 Near-Optimal Polynomial for Modulus Reduction 66 4.3.1 Approximate Polynomial Using L2-Norm optimization 66 4.3.2 Efficient Homomorphic Evaluation of the Approximate Polynomial 70 4.4 Optimal Approximate Polynomial and Bootstrapping of the CKKS Scheme 73 4.4.1 Polynomial Basis Error and Polynomial Evaluation in the CKKS Scheme 73 4.4.2 Variance-Minimizing Polynomial Approximation 74 4.4.3 Optimal Approximate Polynomial for Bootstrapping and Magnitude of Its Coefficients 75 4.4.4 Reducing Complexity and Error Using Odd Function 79 4.4.5 Generalization of Weight Constants and Numerical Method 80 4.5 Comparison and Implementation 84 4.6 Reduction of Level Loss in Bootstrapping 89 4.7 Implementation of the Proposed Method and Performance Comparison 92 4.7.1 Error Variance Minimization 92 4.7.2 Weight Constant and Minimum Error Variance 93 4.7.3 Comparison of the Proposed MethodWith the Previous Methods 96 5 Efficient Code-Based Signature Scheme and Cryptanalysis of Code-Based Cryptosystems 104 5.1 Introduction 104 5.2 Modified ReedMuller Codes and Proposed Signature Scheme 105 5.2.1 Partial Permutation of Generator Matrix and Modified ReedMuller Codes 105 5.2.2 Decoding of Modified ReedMuller Codes 108 5.2.3 Proposed Signature Scheme 110 5.3 Security Analysis of Modified pqsigRM 111 5.3.1 Decoding One Out of Many 112 5.3.2 Security Against Key Substitution Attacks 114 5.3.3 EUFCMA Security 114 5.4 Indistinguishability of the Public Code and Signature 120 5.4.1 Modifications of Public Code 121 5.4.2 Public Code Indistinguishability 124 5.4.3 Signature Leaks 126 5.5 Parameter Selection 126 5.5.1 Parameter Sets 126 5.5.2 Statistical Analysis for Determining Number of Partial Permutations 128 5.6 Equivalence of the Prototype IKKR and the McEliece Cryptosystems 131 5.7 Cryptanalysis of the IKKR Cryptosystems 133 5.7.1 Linearity of Two Variants of IKKR Cryptosystems 133 5.7.2 The Attack Algorithm 134 5.7.3 Implementation 135 6 Conclusion 139 6.1 Privacy-Preserving Machine Learning Without Bootstrapping 139 6.2 Variance-Minimization in the CKKS Scheme 140 6.3 L2-Norm Minimization for the Bootstrapping of the CKKS Scheme 141 6.4 Modified pqsigRM: RM Code-Based Signature Scheme 142 6.5 Cryptanalysis of the IKKR Cryptosystem 143 Abstract (In Korean) 155 Acknowlegement 158Docto

    Report on evaluation of KpqC candidates

    Get PDF
    This report analyzes the 16 submissions to the Korean post-quantum cryptography (KpqC) competition
    corecore