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Abstract

This paper presents a new minimum-weight
trellis-based soft-decision iterative decoding al-
gorithm for binary linear block codes. Simu-
lation results for the RM(64,22), EBCH(64,24),
RM(64,42) and EBCH(64,45) codes show that the
proposed decoding algorithm achieves practically
(or near) optimal error performance with signif-
icant reduction in decoding computational com-
plexity. The average number of search iterations
is also small even for low signal-to-noise ratio.

1 Introduction

Recently Moorthy et. al.[2] have proposed a
zero-and-minimum-weight subtrellis-based itera-
tive decoding scheme for binary linear block codes
to achieve a very good trade-off between error
performance and decoding complexity. In the
scheme, all the candidate codewords are gener-
ated by an algebraic decoder based on a set of
test error patterns proposed by Chase[I]. The
zero-and-minimum-weight trellis search around
the current best candidate codeword c is per-
formed at most once, only if (i) a sufficient condi-
tion that the optimal solution is within the min-
imum distance from c holds or (ii) all the test
error patterns have been exhausted and no can-
didate codeword satisfies the sufficient condition

for optimality.
For the proposed decoding algorithm in this

paper, preliminarily presented in [6], the initial
candidate codeword is generated by a simple de-
coder, the zero-th order or the first order decod-
ing proposed in [4]. The subsequent candidate
codewords (if needed) are generated by a chain of
minimum-weight trellis searches. This minimum-
weight trellis around a candidate codeword c con-
sists of only the codewords in code C that are at
the minimum distance from c, but does not in-
clude c. The decoding iteration stops whenever a
candidate codeword is found to satisfy a sufficient
condition for optimality or the latest minimum-
weight trellis search results in a repetition of a
previously generated candidate codeword. Let
this decoding algorithm be denoted Algorithm I-

Wl. The decoding process terminates faster than
the Moorthy et. al. algorithm. Furthermore, the
use of minimum-weight trellis search considerably
reduces the possibility of being trapped into a lo-
cal optimum. As a result, it achieves better
error performance than the Moothy et. al. algo-
rithm.

A necessary condition for Algorithm I-wl to
achieve good error performance is that the min-
imum weight codewords span the entire code.
Reed-Muller(RM) codes satisfy this condition.
Simulation results for the RM(64,22)(the (64,22)
RM code), RM(64,42) and the EBCH(64,45)(the
extended (64,45) BCH code) codes show that the
proposed decoding algorithm practically achieves
optimum MLD performance even in the range of
relatively low SNR. The EBCH(64,24) code is an
example for which the above necessary condition
does not hold. For this code, the first and second
minimum weight codewords span the entire code.
In this case iterative decoding algorithm based
on the first and second minimum-weight trellis

search, denoted Algorithm I-wl-w2, is used.
We also propose another approach to overcome

the problem. Let Co be a linear subcode of C and
assume that the minimum weight codewords of Co
span Co. The decoding scheme is a combination
of: (1) the iterative search using the minimum-
weight trellis for Co around the latest candidate
codeword, and (2) a procedure for moving from
the coset of Co in C, containing the current candi-
date codeword, to another coset which is likely to
contain the optimal solution. Simulation results
for the EBCH(64,24) code show that this scheme
achieves better error performance than Algorithm
I-wl-w2.

2 Sufficient Conditions for Op-

timality

Suppose a binary (N,K) linear block code C is
used for error control over the AWGN channel

using BPSK signaling. Let z = (Zl,Z2,..., zy) be
the binary hard-decision sequence obtained from
the received sequence r = (rl, r2,..., rN).

Let VN denote the vector space of all binary



N-tuples. For an N-tuple u = (Ul,U 2 .... , UN) E
VN, let L(u) be defined as follows:

L(u) = _ [ri]. (1)

{i:u,#_ and I<i<N}

L(u) is called the correlation discrepancy of u
with respect to z, and the smaller L(u) is, the

larger the correlation between u and r is. For
u and v E VN, u is said to be better than v

if L(u) <_ L(v). For a nonempty subset X of VN

and a positive integer h, let h' denote min{ IXI, h}
and let besthX denote the set of the h t best n-

tuples in X, that is, for any u E besthX and

v E X - besthX, L(u) <_ L(v). The best n-tuple
in X will be denoted bestX.

Let dH(u, v) denote the Hamming distance be-

tween two N-tuples, u and v. For ul, u2,

• .., Uh E VN and positive integers dl, d2, ...,
dh, let VN(ul,dl;u2,d2;...;uh,dh) be defined

as the set: {u E VN : dg(u, ui) > di for
1 < i < h}, and let L_(ul,dl;u2,d2;...;uh,dh)
be defined as the minimum of L(u) over u E
VN(ul,dl; u2,d2;... ; Uh,dh) •

Then we have the following early termination
condition of an iterative decoding algorithm with-

out degrading the error performance.
Lemma: At a stage of an iterative decoding al-

gorithm for a block code B(C itself or a coset of
a linear subcode of C), let GC denote the set of

those candidate codewords which have been gen-
erated already, and let Ubest denote the best of
GC. Suppose that for Ul, u2, ..., Uh E GC and

positive integers dl, d2, ..., dh, Ubest is the best

of Uih=0{u E B : dH(U, ui) < di}. If Ubest satisfies
the following condition,

L(ubest ) __ L(ul,dl;u2, d2;... ;Uh,dh) , (2)

then Ubest is the optimal MLD solution in B. z_z_

Expressions for evaluating the right-hand side
of (2) for h = 1,2 and 3 have been derived [3].

These bounds are used in our proposed iterative
decoding algorithm for early termination condi-
tions.

3 Decoding Procedure

Let C be a binary linear (N, K) code with weight
profile W = {0, wl,w2,...}, and let Co be a bi-
nary linear (N, Ko) subcode of C with weight pro-

file W0 = {0, w01,wo2,...}, where wl is the mini-
mum weight of C, wm is that of Co and wi _< w0i.

As a special case, Co may be C itself.

3.1 Minimum-weight Subtrellis Search
for a Coset

For B E C/Co and u E B, minimum-weight
search (u, B) denotes a search procedure for find-

ing a codeword in B, denoted _s(u), which has
the least correlation discrepancy with respect to z
among all codewords in B at the minimum Ham-

ming distance w01 from u. That is,

_aB(u) = best{v E B: dtf(v,u) = w01}. (3)

If Co is spanned by the set of minimum weight
codewords of C, that is, Co = C or C is an

UEP(unequal error protection) code, then wm=
Wl and

_B(U) = _aC(U) _- best{v 6 C: dH(v,u) = wl}.
(4)

This search procedure is implemented by using

the minimum-weight subtrellis of Co around u.
This minimum-weight subtrellis is sparsely con-

nected and much simpler than the full trellis of
the code[2, 6].

Iterative minimum-weight search (u,B) is to
generate a sequence of candidate codewords,

_os(u), _oS(_os(u)),..., until a certain termina-
tion condition holds. It is shown in [6] that

L(_2(u)) < L(T_(u)), for i _> O, (5)

where _°(u) -_ u and _l(u) =_ _(_(u)) for

i _> O, and that if L(_o_2(u)) < L(_(u)) for

0 < i < I, then qo_(u) with 1 < i < I are all
dit_erent. If j is the smallest index such that

L(_JB-2(u) ) = L(_JB(u) ), (6)

then

min{L(_(u)) : 0 < i < j} =

min{ L(_/B-2(u)), L(_o_-l(u))}. (7)

The condition (6), denoted Condm is used as one
of termination conditions for Iterative minimum-

weight search (u, B) to avoid repetition.

3.2 Decoding Procedure for C

Suppose the set of codewords of weight w01 in Co
spans Co and K - Ko is not large. We propose
a new decoding procedure for C which consists

of iterated minimum-weight searches in a coset
and coset shiftings. Two early termination condi-
tions, Condo for the entire procedure and Condm

in the subprocedure for a coset B E C/Co, are
used besides the termination condition CondR in

the subprocedure for a coset.
Condc is a sufficient condition [3] that the best

candidate codeword, denoted Ubest , in the set of
those candidate codewords which have been gen-

erated already, denoted GC, is optimum based on
besthGC and the weight profile W of C, where h



is a specified small integer. From the Lemma,
Condc is defined as

L(Ubest ) < L(ul,dl;u2,d2;...;ul, dl) , (8)

where I = min{h, IGC[} and for 1 < i < l, ui E
besthGC and if _c(ui) E GC, then di = w2 and
otherwise, di = Wl.

CondB is a sufficient condition that there re-
main no codewords in B better than Ubest.
This condition is also based on besthGCB where

GCB = GC fq B and the weight profile W0 of Co

which is the same as the distance profile of any

coset of C/Co. From the Lemma, CondB is de-
fined as

L(Ubest) <_ L(ul,dl;u2,d2;...;Uls,dlB), (9)

where IB = min{h, IGCsI) and for 1 _< i < 1s,
ui E besthGCs and if _B(Ui) E GCB, then di =

wo2 and otherwise, di = w01. For instance, if the
minimum or the second minimum weight of Co

is greater than that of C, then Conds is more
effective than Condo only.

In the procedure, global variables GCh and

GCB,h are used besides GC and ubest. GCh de-
notes the current value of besthGC and GCB,h
denotes the current value of besthGCB. For

B E C/Co, let f(r,B) denote the initial candi-

date codeword in B for a given received sequence.

3.2.1 Decoding Algorithm II

We assume that z _ C.

(D1) (i) Generate f(r,B) for all B E C/Co, and

number the 2K-K° cosets of C/Co in the increas-

ing order of correlation discrepancy, n(f(r, B)).

(ii) Initialize GC 4-- {f(r,S) : B E C/Co),
Ubest 4-- bestGC and GCh e-- besthGC. If Condc

holds, then output Ubest and stop. Otherwise, ini-

tialize GCB, GCB,h _ {f(r,B)) for B E C/Co,
and perform Search-in(the first coset).
(D2) Search-in(B): Execute Iterative minimum-

weight search(f(r,B), B) together with updat-
ing the global variables each time a new candi-
date codeword is generated until either CondR,

Condo or Conds holds. If Condo holds, then

output _best and stop. Suppose that CondR or
CondB holds. If all cosets have been exhausted,

then output _/.best and stop; and otherwise, call
Search-in(the coset next to B).

(D3) If either Condo or CondB holds for every
coset in C/Co, the output is optimum.

For the special case where C = Co, this decod-

ing algorithm becomes Algorithm I-wl.

3.3 Choice of the Initial Canidate

Codeword f(r,B) for B e C/Co

For a given received sequence r = (r l, r2,..., r/v),
let MK be the location set of the most reliable

basis of the column space of a generator matrix of

C, and let AN-Ko be the location set of the least
reliable basis for the column space of a parity-
check matrix of Co. Then it follows from Theorem

1 in [5] that

]MK N A/v-Ko [ = K - Ko. (10)

For x = (Xl, x2,..., XN) E VN and a coset B E
C/Co, a codeword u = (Ul,U2,...,u/v) E B sat-

isfying the following condition is uniquely deter-
mined:

ui = xi, for all i E MK -- A/v-Ko. (11)

Let g(x, B) denote the above codeword u in B.

Then g(z, B) can be chosen as the initial candi-
date codeword f(r,B) for B = C/Co, where z is
the hard-decision binary vector obtained from the

received sequence r. This g(z, B) for B = C/Co

is a simple generalization of the zero-th order de-

coding proposed by Fossorier and Lin[4] to a coset
of Co in C. Similarly, a generalization of their first
order decoding can be used.

4 Examples

Example 1: Let C = EBCH(64,24) and Co =

RM(64,22). Thenwl = 16, w2 = 18, wm= 16
and w02 = 24. Decoding Algorithm II, where
early termination condition Conds is not used,
has been simulated for this code. The simulation

results are shown in Figures 1 and 2. For compar-

ison, the simulation results of Algorithm I-wl-w2
for this code are also shown. Figure 1 shows the

bit error probabilities. We see that Algorithm
II practically achieves optimal error performance.

Figure 2 shows the average numbers of opera-
tions(addition and comparison) of Algorithm I-

wl-w2 and Algorithm II. The numbers depend on
the complexities of subtrellises used in the sim-
ulation. The minimum weight subtrellis of the

RM(64,22) code used in Algorithm II and the first
and second weight subtrellis of the EBCH(64,24)

code used in Algorithm I-wl-w2 are obtained sim-
ply by purging the 4-section full trellis diagrams
of the codes. The construction of better subtrellis

is under study.

We see that the average number of operations

of Algorithm II can be reduced by using Conds.

Example 2: Let C = Co = EBCH(64,45) with
Wl = 8 and w2 = 10. For this case, the simula-

tion results of Algorithm I-wl, where the initial
candidate codeword is provided by the first order

decoding in [5], are shown in Figures 3 and 4.
Simulation results of the RM(64,22) and

RM(64,42) codes are shown in [6].
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Absfract -- Maximum likelihood decoding of

long block codes is not feasable due to large

complexity. Some classes of codes are shown to
be decomposable into multilevel concatenated

codes(MLCC) [3 I. For these codes, multistage
decoding provides good trade-off between per-

formance and complexity. In this paper, we de-

rive an upper bound on the probability of block
error for MLCC. We use this bound to evaluate

difference in performance for different decom-

positions of some codes. Examples given show

that a significant reduction in complexity can
be achieved when increasing number of stages of

decoding. Resulting performance degradation
varies for different decompositions. A guide-

line is given for finding good m-level decompo-
sitions.

I. INTRODUCTION

blultistage Decoding (MSD) is an efficient soft deci-

sion decoding method for long decomposable codes,
such as multilevel concatenated codes (MLCC) [1]. Al-

though suboptimum in performance, it greatly reduces

the computational complexity as compared to opti-

mum decoding.
Since its inception in Hemmati's paper [2], Closest

Coset Decoding (CCD) of lutu+ ol codes and general-

izations of CCD have been investigated by several au-

thors. However, only a few papers on the performance

analysis of this method have appeared [3-6]. Further-

more, these methods are restricted to [uIu + v[ codes
and some others to block modulation codes. The dif-

ferent code-structure of MLCC's precludes application

of the analysis therein to the case of MLCCs.

In [3], an upper bound on the effective error coeffi-
cient (EEC) for 2-stage decoding of MLCC's was de-

rived and some guidelines for choosing a good 2-level

decomposition of Reed Muller codes were given.
In this paper, we first derive an upper bound on block

error probability of MSD of MLCC's, when optimum

decoding of each stage is performed. We first express
the upper bound in terms of all the error coefficients,

and then explain how these coefficients can be ob-

tained using some combinatorial methods and weight

1This work was supported by NSF grant NCR-9415374 and

NASA grant NAG 5-931.

distributions of inner and outer codes of a MLCC. The

bound enables prediction of the performance of MSD

(two or more levels) without sinmlation. Therefore an
estimate of performance degradation, when the num-

ber of decoding stages is increased, can be obtained.

II. ANALYSIS OF CCD oF MULTILEVEL

CONCATENATED CODES

For an M-level code C = {BI,B2,...,BM} *

{A1, A2,..., AM}, consider the i-th stage of decoding
for 1 < i < M. At each stage, decoding is assumed to

be complete (an estimate of a transmitted codeword is

always given) soft decision maximum likelihood closest

coset decoding [5].

Let p(1) denote the probability that the i-th stage de-

coder makes an error when all previous (i-1) stages are

correct. Then. conditioning on the i-th stage decoding

being in error, we obtain P, = _"]_:_1p}i). In general,

p}i) depends on the codeword at the output of the i-th
inner encoder. However, for binary linear codes, BPSK

transmission and the AWGN channel, p}i) is the same

for all transmitted codewords [7]. For simplicity, we
assume that the all-zero codeword is transmitted. In

this case, the output of each Bi-encoder at the trans-
mitter is the all-zero codeword in Bi. The received

(nAnB)-tuple r = (r (i), r (2) .... , r ("a J) is sectionalized

into nB sections each of length ha, where n/3 and nA

are lengths of outer and inner code respectively.
En error at the i-th stage, when CCD is used, occurs

if a nonzero codeword b = (bt,b2,...,b,_B) E I3i has

larger correlation than the all-zero codeword z E Bi.

Let M = J J(al,a2,...,a_,,) be the codeword with the
best correlation in the coset corresponding to j-th sym-

bol bj, for j - 1,2 ..... nB. If a standard BPSK map-
ping (0 -- 1, 1 -- -t) is applied, then the difference
in metrics of b and z can be bounded by the following

expression:

t2 B rIA

M(b)-M(z) < Z Z (-2_), (1)

j=t,bj#0 l=l,a_ =I

where M(.) denotes correlation metric. Thus the prob-

ability of error at fi_e i-th stage is given by

Pi') = P(M(b)- M(z) > 0. b E B i, b # 0). (2)



Fora particulara andb,

T(a,b) = E (-24)
j=l,bj#0/=l,a_ =Z

is a Gaussian randome variable with mean # and

vanancea" given by

. = 2A ; = 4Z
hi#0 hi#0

where A is the amplitude of a transmitted BPSK signal

(SNR=10 log (A2/2 k/n)). It then follows tha_

p(O_< E E E e(T(a,b)>0)

beBi _¢0 ae fZ(bi)

= E E E _erfc A _ Ew(a) , (3)

be B i _i#o a_n(bi) G#o

where f_(bi) represents the coset corresponding to the

symbol bi, and w(-) the weight of a codeword.
Note that for any 0 -# b E Bi 0 _ a E Ai,

Definition 1: Define Si(Y') as the number of terms

of the form _ erfc (,4 v/_)
%

satisfying
%. t

1. Y = _b,;_0 w(a)

2. b E Bi, a E f_(bj)

The union bound on the probability of error at the

i-th stage of decoding is then given by

F iP:'><E   erfc (4)
Y

where the summation is taken over all Y defined above.

Thus

i

i Y

Si(Y) depends on the symbol weight distribution of

the i-th outer code Bi, the Hamming weight distribu-

tion of the MLC code C and critically on the weight

distribution (of na-tuples) in the cosets of the parti-
tion Ai/Ai+t. For inner codes of small lengths the

coset weight distribution can be evaluated easily by an

exhaustive computer search program or using combi-
natorial methods•

III. RESULTS FOR SOME MLCC CODES

Consider the decomposition

RM(64, 42, 16) = {(8, 1.8)(8, 4, 4) 3, (8, 7, 2)_(8, 8.1)} *

{(8, 8, 1), (8,4,4), (8,0)}

given in [3]. The symbol weight distribution of BI is
NB_(0) = 1, NB,(4) = 98, NB,(6) = 1,176, NB,(7) =

1,344, NB,(8) = 5,573. The symbol weight dis-

tribution of B., is NB_(0) = 1, NB_(1) = 8,

Na2(2) = 812, NB_(3) = 23,576, NB,(4) = 443,030,

NB=(5) = 5,315, .576, NB=(6) - 39,867,212, NB_. (7) ----

170,859,368, NB_(8) = 320,361,329. The coset

weight distributions of AI/A 2 and A2/{0} are given
in Table 1.

To compute Si(Y')with i = i, 2 , we have to deter-

mine how many nAna-tuples of weight Y can result

from a b E B 1 of symbol weight w1(Bt) = X. In
order to answer this question, we must see if a parti-

tion of the integer Y into X parts is possible with each

part belonging to a valid entry in the coset weight dis-

tribution of the partition (8, 8, 1)/(8,4,4). A partition
of the form 8 = 2 + 3 + 1 + 2 is invalid because none

of the non-zero cosets in the above partition have a

vector of Hamming weight 1 or 3. Furthermore, the
partitions must be counted in an ordered fashion (i.e.,

we are counting the so called distributions of an in-

teger). For example, there are 12 distributions of 16

into parts {4, 4, 2, 6}. The partition table for first two

nonzero weights in both first and second stage are given
in Table 2.

The effective error coefficient in stage-1 is determined

as 5"1(8) = 98 x 256 = 25,088. The next two error
coefficients are Sl(10) = 98 x 4 x 4a x 8 = 200704 and

$1(12) = 98 x (6 x 8_ x 42+44)+4 _ x 1176 = 544,t096.

The higher order error coefficients can be computed in
a similar manner.

In the second stage of decoding, the effective error

coefficient is S._(8) = 8 + 784 = 792 and the er-

ror coefficient 5"..(12) = 18,816. The first three er-
ror coefficients for this 2-level decomposition of R*I

(64,42,8) corresponding to weights 8, 10 and 12 are

SI(8) + $2(8) = 25,880 , St(10) = 200,704 and

SI(12) + $2(12) = 5,462,912.
In summary, for the Reed-Muller code C =

(64, 42, 8), an upper bound (with first two significant

terms) on the block error probability with two-stage

decoding is

P_,2-,tage < 2.5 104 _ erfc A *

1

The complexity of stage-2 can be reduced by employ-

ing a 3-s_age decomposition

RM(64, 42, 8) =

{(8, 1, 8)(8, 4, 4) 3, (8, 7, 2} -_,(8, 7, 2)(8.8, 1)} *

{(8, 8, 1), (8, 4, 4), (8, 2, 4), (8, 0)} (6)

for which



P_,3-_g_ < 2.6 104 _ erfc ,4 +

2.0 l0 s _ erfc +

Notice that the asymptotic loss in decoding gain, due

to this simplification, predicted from the bound is prac-

tically zero, and this agrees with actual simulation re-

suits shown in Figure 1.
Table I

Coset-:_'s Weight of vector
0 2 4 6 8

0 1 - 14 1

1-7 4 8 4 -
Table 2

II t Partition IN1 I N2 II
4 {2, 2, 4, 4} 6 42 82 6

4 {2,2,2,6} 4 4a4

4 {2,2,2,4} 4 438

5 Not possible -

7 Not possible -

6 {2,2, 2,2,2,2} 1 44

Nx =Number of partitions. N2 = Number of code-

words in Bi * [Ai/Ai+l] per partition.
For long codes, even 2-stage CCD cannot be per-

formed in an optimal manner due to the complexity

of the trellises involved. Hence it is imperative that

tight bounds be derived so that the loss of codi,g gain

at high SNRs due to m-stage (m >_ 3) can be predicted.
The loss in coding gain of 2-stage relative to m-

stage decoding can be determined based on the er-
ror coeTficients derived in the paper. For tlle code

C = (12S, 64,16) RM, and 7, = 2,3, this is shown

in Figure 2.
The corresponding expressions are

Pe,__,tage < 13.8 I0 _ erfc +

1
5.1 109_ erfc (.4V/2-_)

91
P_.3-,,ag, < 1.6 × 10 _ erfc (,4 V/]"6"_) +

6.1 x 10131 (_)erfc A

The three stage decomposition has a trellis complex-

ity of 512, 128, and 512 states for the first, second,

and third stage, and the average number of operations

per information bit is 1263. The most of the computa-

tional complexity is due to a large and fully conected

trellis of the third stage, so a way to reduce it is to im-

plement 4-stage decoding by dividing the third stage

into two stages.

The difference between the bounds for 2-stage and 3-

stage at block error rate 10-6 is about 0.6 dB. Since
the simulation of 2-stage decoding with MLD at each

stage is not available, we compared the results of 3-

stage decoding with a 2-stage decoding where the first

stage is decoded using iterative search. We believe this

would be very close in performance of optimum 2-stage

decoding. The difference in performance for this 2-

stage and optimum 3-stage decoding is 0.6 dB as well.

The third example is done for the (72, 52, 8 decom-

posable code. Bounds for 3 and 4-stage decoding of

this code are given in Figure 3.

The state complexities are 2,512, 8, 1 for the 4-stage

decoding, and {1024, 8, 1} for the 3-stage decoding.

IV. TRADE-OFFS BETWEEN COMPLEXITY AND

PERFORMANCE

We have shown in the previous section that the perfor-

mance of 2 and 3-stage decoding of (64, 42, 8) code are
almost identical. However, this is true only for 3-stage

decomposition (6). Reduction in state complexity is

not significant, since maximum number of states in the

first stage remains 128 (the same as for 2-stage decom-

position) and the maximum numbers of states at the

second and third stage are 4 and 2 respectively (as com-

pared to 8 states in 2-stage decomposition). The aver-

age number of operations per information bit, though,
is reduced from 393 to 133 (almost three times).

For another 3-stage decomposition,

rtM(64, 42, 16) =

{(8, 1,8)(8, 4, 4), (8, 4, 4) 2, (8, 7, 2)3(8, 8, 1)} •

{(8, 8, 1), (8, 6, 4), (8, 4, 4), (8, 0)}, (7)

maximum number of states is reduced to 16 (in the

second stage), so 8 times compared to two stage de-
compoition. Unfortunately, this decomposiyion loses

about 0.5 dB in performance, and the average num-

ber of operations per information bit is 227. Thus the

3-stage decomposition (6) outperforms decomposition

(7), while having smaller computational complexity.
We can see that the performance of the multistage

scheme depends mainly on the first decoding stage.

This suggests that when increasing the number of
stages, lower level stages should be divided, while the

first should be kept as long as the number of states
in the outer code trellis is not too big. In such man-

net, the performance degradation will not be large (in
some cases almost negligible). Since lower level codes

in multilevel decomposition are high rate codes with

complex trellis structure, splitting each of them into
two levels will reduce the complexity significantly (as

we have seen in the example of RM(64,42,8) code).

This can be used to determine a good decomposition

of a code.



V. CONCLUSION

In this paper, we have shown how to bound the per-
formance of mt, ltistage decoding of Multilevel concate-

nated codes. _Ve presented examples which show that

the simulation results converge to derived bounds at

moderate to high signal-to-noise ratios. Therefore, an
estimate of the difference in performance for differ-

ent decompositions and different numbers of decod-

ing stages can be determined. Analysis of reduction

in complexity when using large number of decoding

stages has also been discussed.
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Figure 1: Simulation results and performance bounds

for RM(64,42,8) code
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Figure 2: Simulation results and performance bounds

for RM(128,64,16) code

REFERENCES

[1] V. A. Zinoviev, "Generalized Concatenated
Codes," Problemy Peredachi Informatsii, Vol. 12.,

No. 1, pp. 5-15. 1976.

[2] F. Hemmati, "Closest Coset Decoding of [u[u + "v[
codes," IEEE J. Selected Areas Communications,

Vol. 7, pp. 982-988, Aug. 1989.

[3] J. Wu and S. Lin, "An Upper Bound on Effec-

tive Error Coefficient of Two-Stage Decoding, and

Good Two-Level Decompositions of Some Reed-

Muller Codes," IEEE Transactions on Commu-
nications, Vol. 42, No. 3, March 1994.

[4] M.P.C. Fossorier and S. Lin, "Weight Distribution

for Closest Coset Decoding of [u[u+ v[ Constructed

Codes," submitted to IEEE Transactions on Infor-

mation Theory, in revision. November 1995.

[5] T. Takata et. al., "An Improved Union Bound

on Block Error Probability for Closest Coset De-

coding," IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sci-

ences, Vol. E78-A, No. 9,.September 1995.

[6] T. Takata, Y. Yamashita, T. Fujiwara, T. Kasami
and S. Lin, "Suboptimum Decoding of Decompos-

able Block Codes," IEEE Transactions on Infor-

mation Theory, Vol. 40, No. 5, Sop. 1994.

[7] T. Takata, S. Ujita, T. Kasami and S. Lin, "Multi-

stage Decoding of Multilevel Block M-PSK Modu-
lation Codes and Its Performance Analysis," IEEE

Transactions on Information Theory, Vol. 39, No.

4, July 1993.

10 oT

I0 "z :

10 -:_,

_I0 "a

10 -ll

,._ _0 -°'

10 -e [

10 4

10 °'0

!!!!!!!_!!!!!_!!!!!!!!!!!!_!i!!!!!_!!!!_!!!!!!!U!!!!!!!!!!U!!!!_!_!_!_!!!!!!!!_!!!!!!N!!!!

. - _;_i_ii_&_+G;_Qi;_ii_iH_i_;_;_i_&_i_ _
f+!!_++_!!+%+_++!!_!+!+_+!_!!_!!!!+!!_!!_!!!_++!!!!!_!!!+!+!!!!!+!!!!!+!+!!!!+++!!!!+!++
..... :....,..:+: ...... + ".:+.:..:k:....:..:..;::::: ...... +::....:....+ ........................

_]IIIHiIIIHI,:HI',IIIiIIiIIf',IIIHHIIIIiIIIII,,II,r

L;+++++F++++!+_+++!_U++_+!+_i::.V::H+!+_!+H+iHH+::i++!H]H++:HU++H+H+H++:+HH+

_+___+++_ ........... _...........

Ill ! II. lfll Illllli_'lltlllflt HII!IIII fI31ll ltlltll]]l_tlll_lllltllllll_lllflltllHf
!!_:!+!!: :_H; :_!!!!!_!!!!!!!!!!!U!!!!!!+!++!_!!!!!!:_:_+_::!!_!!!_!!!!!!!!!!!:+!!!!!+!!!][

2:::::::::'_!!_':::" =================================================================================!!!!!!!!_,*,t,I--! .............

:H:_:;:;![:.!, +H:.+!!:_[_!!:[!!!:!!!::_:_!_!]:!::!:!!::::H;!!:[::. "'!;;:;!!!!;[!;!:!![:!!_!::

__!!!!!!!!!!!!!!!!!_!?_!_;!!!!_!!!!!!!!!!!i!!!!!_!!!!!!!!!!!i!!!!!!!!!!!_.i_!!!!!!!!!!!!!]!]!_![!.............
_!!il!!!!!_!!!]!!!!; !!L'!!!i!_!_!I!!!!_H!!!?!_!!_!]!]!!!]!!!I_i!I!!!_!I_!!L:!]_]!I!!!!!!!!I

=============================================================

__!_I!!!!T!!U!_!!!!!!!!!!!!!!!!!!!!!!!_I!I!_!!I!UT2!!I!!!_!!_

i i i i i i 111$ § 7 + _ 10 12

s_ [_Ol

Figure 3: Performance bounds for (72,52,8) decompos-
able code





PART III

BIT ERROR PROBABILITY FOR

MAXIMUM LIKELmOOD DECODING

OF LINEAR BLOCK CODES

Marc P.C. Fossorier, Shu Lin and Dojun Rlhee



Bit Error Probability for Maximum Likelihood Decoding of Linear

Block Codes

Marc P.C. Fossorier 1, Shu Lin land Dojun Rhee 2

1 Dept. of Electrical Engineering University of Hawaii at Manoa Honolulu, HI 96822, US_. ":_':7 '_)_ {,'f-,

2 LSI LOGIC Corporation, 1525 Mc-Carthy Bird, MS G-815, Milpita-% CA 95035, USA
Emaih marc@wiliki,eng.ha_aii,edu

Abstract -- In this paper, the bit error prob-

ability P_ for maximum likelihood decoding of

binary linear codes is investigated. The con-
tribution of each information bit to P_ is con-

sidered. For randomly generated codes, it is
shown that the conventional at.proximation at

high SNR Pb _. (dn/N). P,, where Ps represents
the block error probability, holds for systematic

encoding only. Also systematic encoding pro-
vides the minimum Pb when the inverse map-

ping corresponding to the generator matrix of
the code is used to retrieve the information

sequence. The bit error performances corre-

sponding to other generator matrix forms are
also evaluated. Although derived for codes with

a generator matrix randomly generated, these

results are shown to provide good approxima-
tions for codes used in practice. Finally, for de-

coding methods which require a generator ma-
trix with a particular structure such as trellis

decoding or algebraic-based soft decision decod-

ing, equivalent schemes that reduce the bit er-

ror probability are discussed.

I. INTRODUCTION

In this paper, we consider the minimization of the bit

error probability P, for maximum likelihood decoding

(MLD) of linear block codes. Although not optimum,

this minimization remains important as MLD has been

widely used in practical applications. We assume that

the information sequence of length K is recovered from

the decoded codeword based on the inverse mapping

defined from the generator matrix of the code. For

block codes, the large error coefficients can justify this

strategy which is explicitly or implicitly used in many

decoding methods such as conventional trellis decod-

ing, multi-stage decoding or majority-logic-decoding.

Therefore, for a particular code and the same optimal

block error probability, we determine the best encod-

ing method for delivering as few erroneous informa-
tion bits as possible whenever a block is in error at

the decoder output. We first derive a general upper

bound on Pb which applies to any generator matrix

and is tight at medium to high signal to noise ratio

(SNR). This bound considers the individual contribu-

tion of each information bit separately. For randomly

2Supported by the NSF Grant NCR-94-15374 and the NASA
Grant NAG-5-931

generated codes, we then show that the systematic gen-

erator matrix (SGM) provides the minimum bit error

probability. To this end, a submatrix of the generator

matrix defining an equivalent code for the bit consid-
ered is introduced. Note that a similar general result

holds for the optinmm bit error probability related to

the BSC [2]. We finally discuss how to achieve this per-
formance whenever the systematic encoding is not the

natural choice, as for trellis decoding [3] or for MLD in

conjunction with algebraic decoding [4]-[8]. For exam-

ple, for trellis decoding of the (32,26,4) Reed-Muller

(RM) code, at low SNR a performance degradation of
more than 1 dB is recovered with the proposed method.

Minimizing the bit error probability associated with

MLD becomes even more important whenever the con-
sidered block code is used as the inner code of a con-

catenated coding system [9].

II. BIT ERROR PROBABILITY FOR MLD

Suppose an (N, K, dH) binary linear code C with gener-
ator matrix G is used for error control over the AWGN

channel. Defining

1 K

Pb = -f_ E P_(J)' (1)
j=l

where Pb(j) represents the error probability for the j:g
bit in a block of A" information bits delivered by the

decoder, we obtain from the union bound

N

Z (2)
i=dH

where 0(x) = (,xN0)-'/2 f__ e -':/tc°dn. We call &_(j)
the effective error coefficient associated with the

jth information bit with respect to the genera-
tor matrix G.

We can prove the following theorem.

Theorem 1 Let wi represent the number of codewords

of weight i in the code C generated by G and let wi(j)

represent the number of codewords of weight i in the

subcode generated by the matrix G(j) obtained after

deleting row-j in G; then

t_i(j) = wi - wi(j). (3)

Theorem 1 depends on the mapping defined by G as

it implicitly assumes that the inverse mapping corre-

sponding to G is used to retrieve the information bits



from the decodedcodesequence.Sincefor a linear
code,this mappingis one-to-oneandthusinvertible,
Theorem1 is validfor anyrepresentationof G, sys-

tematic as well as non-systematic. Combining (1) and

(2), the average bit error probability is expressed as

eb<_ -KE 0 , (4)
i=dH j=l

For a code defined by a matrix G randomly generated,

we associate with each information bit j E [1,K] a
matrix

l ° 1Do(j)= Ic,-t [ 17" ' (5)

where 1. and Ic,-t represent the all-1 vector and the

identity matrix of dimension _ - 1 respectively. The

matrix Da (j) is defined as the dependency matrix

associated with dimension j of the generator

matrix G. This matrix allows to derive the following
theorem.

Theorem 2 Let consider an (N, K) linear block code
C with a generator matrix generated randomly. Then

the value ff_i(j) corresponding to the dimension j with

dependency matrix Da(j) is well approximated by

t_i(j) ._ 2 -(N-K) Z 21 + 1 i -- (21 -{" 1) " (6)
1=0

Theorem 2 indicates that the larger a. the larger the

corresponding Pb(j). Consequently, a = 1 gives the

smallest bit error probability. For this case, DI = [1]

which corresponds to a systematic encoding. There-
fore, the optimum bit error probability for MLD at

medium to high SNIZ is achieved by a systematic en-

coding if the inverse-mapping defined by G is used to

retrieve the information bits. This strategy is intu-

itively correct since whenever a code sequence esti-

mated by the decoder is in error, the best strategy

to recover the information bits is simply to determine

them independently. Otherwise, errors propagate. For
a = 1, (6) becomes [1]

-- -
\ i - 1 J _ (i/N) wi. (7)

In that case only, at high SNR, the bit error probability
for MLD follows

Pb _ -_- wd, 0 V_H . (8)

For Reed-Muller (P_M) codes of length N < 64, we

computed the ratios t_a, (j)/w_ u corresponding to (6)
for various forms of generator matrices. In all cases, the

value computed from (6) is the exact ratio, although
the weight distribution of RM codes is far from a bi-
nomial distribution.

III. 'APPLICATIONS

A. ML trellis decoding

ML trellis decoding is based on the trellis oriented gen-

erator matrix (TOGM) of the code considered [3]. If

this matrix is used for encoding, trellis decoding be-

comes suboptimum with respect to the bit error prob-
ability of MLD. We present a simple method to over-

come this problem.

Let Gt denote the TOGM of the code Ct. Then, by

row additions only, it is possible to obtain the gener-
ator matrix G of an equivalent code C which contains

the K columns of the identity matrix. This matrix is

known as the reduced echelon form (REF). These op-
erations modify the mapping between information bits

and codewords, but since no column permutation has

been realized, each codeword of C is still uniquely rep-
resented by a path in the trellis of C,. Therefore ML

trellis decoding of the received sequence is still possible

if we use G for encoding. The trellis decoder estimates
the code sequence which is closest to the received se-

quence. Then the information bits are easily retrieved
due to the systematic nature of G. Since no restric-

tions on Gt apply, the matrix G can be obtained for

any possible trellis decomposition.

In [10], a specific ML trellis decoding algorithm for
the (63,57,3) Hamming code is proposed. The decod-

ing is realized based on a generator matrix in cyclic

form. It is also shown that an equivalent systematic

representation outperforms the cyclic form by 0.4 dB

at the BER. 10 -s. However, the decoding of the sys-

tematic code requires an additional step. By process-
ing the generator matrix in cyclic form as described in

this section, this additional step can be removed as the

encoding matrix becomes G = [I._rP6]. On the other

hand, the cyclic structure no longer exits, but the en-
coder remains very simple.

Figures 1 and 2 depict the simulation results for the

(32,16,8) and (32,26,4) RM-codes respectively. For

both codes, we simulated ML decoding based on the

REF and the conventional TOGM described in [3], and
plotted the first term of the union bound derived from

(4). As expected from the results of Section II, we ob-

serve a larger gap in error performance for the (.32,26,4)

RM-code. At the bit error rate (BER) 10 -6, the gap in
performance for this code is about 0.2 dB, which is of
the same order as the difference between closest coset

decoding (CCD) and ML trellis decoding [11]. Also,
we observe a much significant gap at high BER. of 0.4

dB for the (32,16,8) code and 1.1 clB for the (32.26,4)
code. This behavior becomes important if a concate-

nated coding scheme is used.

The extension of this method to multi-stage trellis

decoding does not follow in a straightforward way. In

general, multi-stage decoding methods exploit the de-
composable structure of the code considered, so that

row additions on the associated generator matrix can



destroythisstructure.Forexample,CCDof lulu+ vl-

constructed codes exploits the repetition of the u-

component code [11]. As a result, row additions in each

component code generator matrix are allowed, but not
from one matrix to the other, in addition, the propa-

gation of decoding errors between decoding stages also
has to be considered when searching for the optimum

encoding matrix associated with multi-stage decoding.

B. MZD in conjunction with algebraic decodin 9

Several soft decision decoding algorithms in conjunc-

tion with an algebraic decoder have been proposed [4]-

[8]. In general, algebraic decoding is associated with a

particular generator matrix form G_. Therefore, if this

form is used for encoding, the corresponding algorithm
becomes suboptimum with respect the bit error prob-

ability of MLD. Algebraic decoding algorithms can be

divided into two classes, depending on whether tile de-
coder delivers an estimate of the transmitted codeword

of length N or of the information sequence of length

K. In the first case, the method of Section A extends

in a straightforward fashion. Hence decoding of cyclic

codes can be realized this way. However, a similar

method is also possible for the second class of algebraic

decoders. Again, this method is transparent with re-

spect to algebraic decoding, so that the conventional

algebraic decoder corresponding to the code consid-

ered can still be used. This method simply consists

of recording the row operations processed to obtain G

in REF form Ga and applying the inverse operations

to the information sequence delivered by the algebraic
decoder.

Figure 3 depicts the improvement achieved by this

method for Chase algorithm-2 with majority-logic-

decoding for the (64,42,8) RM-code. The proposed

method outperforms Chase algorithm-2 with conven-

tional majority-logic-decoding by 0.15 dB at the BER.
10 .5"

IV. CONCLUSION

In this paper, we have showed that for many good

codes, the SGM provides the best bit error probabil-

ityfor MLD when the inversemapping of the gener-
ator matrix G is used to retrieve the information se-

quence. Based on the presented results, we can con-
clude that a careful choice of the generator matrix be-

comes important when comparing different optimum,

near-optimum or suboptimura soft decision decoding
schemes. Generally, tenths of dB's separate the bit er-

ror performance of such schemes, so that a poor choice

of tile generator matrix of one of the scheme may result

in an important relative degradation.

By exploiting the fact that modifying the mapping

between information bits and codewords is transpar-

ent to the decoder, we modified conventional trellis

decoding and MLD in conjunction with an algebraic
decoder so that these schemes achieve the same bit

error performance as for systematic encoding. Hence

the decoding becomes independent of the encoding and
can simply be viewed as a process providing the most

likely codeword of the codebook. As a result, the de-
coder structure remains the same as the conventional

one but in some cases the decoded sequence requires

an additional simple reprocessing.
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Abstract -- This paper is concerned with con-
struction of multilevel concatenated block mod-

ulation codes using a multi-level concatena-

tion scheme [1] for the frequency non-selective

Rayleigh fading channel. In the construction of

multilevel concatenated modulation code, block
modulation codes are used as the inner codes.

Various types of codes ( block or convolutional,

binary or nonbinary ) are being considered as

the outer codes. In particular, we focus on

the special case for which Reed-Solomon (RS)

codes are used as the outer codes. For this spe-

cial case, a systematic algebraic technique for

constructing q-level concatenated block modu-
lation codes is proposed. Codes have been con-

structed for certain specific values of q and com-
pared with the single-level concatenated block

modulation codes using the same inner codes.

A multilevel closest coset decoding scheme for

theses codes is proposed.

I. INTRODUCTION

Single-level concatenated trellis coded modulation

(TCM) for AWGN channel was first introduced by
Deng and Costello in 1989 [2, 3]. Almost at the same

time, Kasami et. al. presented a single-level concate-

nated block coded modulation (BCM) scheme for reli-

able data transmission over the AWGN channel [4]. Er-

ror performance of the single-level concatenated TCM

and BCM schemes for the Rayleigh fading channel was

first investigated by Vucetic and Lin in 1991 [5] and

then by Vucetic in 1993 [6].

In the single-level concatenated BCM scheme [4], ev-
ery information bits of inner code are protected by the

same degree. In the AWGN channel, it is possible to

design the inner code such that the bit error rate of
each information bit is almost same. However, in the

Rayleigh fading channel, it is not easy to design the
inner code such that the bit error rate of each informa-

tion bit is almost same. Therefore, in the single-level
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concatenated BCM system, bit-error-rate of some in-
formation bits dominates the overall BER of the coded

system and results in poor bit error performance. How-

ever, in a multilevel concatenated BCM scheme, it is

possible to provide different degree of protection to in-
formation bits with different bit error rates. Outer

codes in each level are designed to stop the error prop-

agation to the next level of decoding.

Multilevel concatenated BCM codes constructed i.n

this paper are designed to achieve better bit error per-

formance than the single-level concatenated BCM code

by stopping the error propagation to the next level

decoding. Simulation results show that these codes
achieve very impressive real coding gains over the un-

coded reference system and single-level concatenated

BCM codes using the same inner codes.

II. MULTILEVEL CONCATENATED BLOCK CODED

MODULATION SCHEME

The proposed multi-level concatenated coded modu-

lation schemes are constructed using a multi-level con-

catenation approach [1].
In a q-level concatenated coded modulation system, q

pairs of outer and inner codes are used as shown in Fig-

ure 1. In block coding, Reed-Solomon (RS) codes are

used as the outer codes, and coset codes constructed
from a block modulation code and its subcodes are

used as the inner codes. The encoding and decoding

are accomplished in q levels respectively.

Outer Code Construction

For l<i<qand l_<j<mi, let Bi,j be an (N, Ki)

RS (or shortened RS) code over GF(2 p) with mini-

mum Hamming distance Di = N - A'i + 1. In the i-th

level outer code encoder, a (N, IQ, Di) RS code is inter-

leaved with depth mi. For 1 < j < mi, let Bi,j repre-

sent the j-th code among mi inter leaved RS c__:_e._

After i-th level outer code encoding, symbols from

GF(2 p) in each RS code are converted into p-bits bi-

nary representation. After conversion, miNp-bits are

stored in the mi by Np array such that every column
has mi bits and each bit in this column is selected from

each RS code Bi,j for 1 _< j _< m_. Since Bi,j = Bi,k



for 1 _< j, k < mi , let Bi - {Bi,l , Bi,_, " . , Bi,m, } rep-

resents an i-th level outer code for 1 < i < q. The i-th

level outer code encoder is shown in Figure 2. Later,

these q-sets of RS codes will be used as the outer codes

in q levels of concatenation.

Inner Coset Code Construction

Let A0 be a block modulation code over a certain el-

ementary signal set S with length n, dimension k0 and
minimum squared Euclidean distance A0. We require
that

k0 = ml +m2 +..-+mq (1)

From A0, we form a sequence of subcodes, A0, At, A._

, ..., Aq, where Aq consists of the all-zero codeword,

i.e. A_ = {0). The dimension of these subcodes satisfy

the following conditions: For 1 < i < q, Ai is a linear
subcode of Ai-1 with dimension

k_= k,-1 - m, (2)

and minimum squared Euclidean distance Ai. From 1

and 2, we have

k2 -

kq-t =

kq -

m2 + m3 +---+ mq-1 + mq

rn3 + m4 + ...+ mq

rnq

0

(3)

We also note that A0 _< At _< ... _< Aq and that Aq
consists of only the all-zero codeword with Aq = oo.

Now we are going to construct q coset codes from

A0, A1,..-,Aq. These q coset codes will be used as
the inner codes in the proposed q-level concatenated

coded modulation scheme. First we partition A0 into

2 "u cosets modulo A1. Let A0/A! denote the set of

cosets of A0 modulo At. The minimum squared Eu-

clidean distance of each coset in A0/A1 is At. The min-

imum squared distance between two cosets in A0/At is

A0. A0/A1 is called the coset code of A0 modulo

At. Next we partition each coset in Ao/A1 into 2m2

cosets modulo A2. Let A0/A1/A= denote the set of

cosets of a coset in A0/At modulo A2. It is clear that

the minimum squared Euclidean distance of a coset in

A0/At/A2 is A2_ and the minimum squared distance

among the cosets of a coset in A0/A1 modulo A= is At.

We call A0/At/A2 the coset code of A0/At mod-
ulo A2. We continue the above partition process to

form coset codes. For 1 < i < q, let A0/At/-../Ai-t

be the coset code of A0/At/-"/Ai-2 modulo Ai-t.

We partition each coset in A0/At/.--/Ai-1 into 2_'

cosets modulo Ai. Then A0/A1/.-'/Ai is the coset

code of A0/At/.-./Ai_l modulo Ai. The minimum

squared Euclidean distance of a coset in A0/AI/..-/

Ai is Ai, and the minimum squared distance among

the cosets of a coset in Ao/A1/. -'/Ai-1 modulo A; is

Ai_l. Note that each coset in A0/At/.-./Aq-t con-

sists of 2m, codewords in A0. Since Aq = {0}, each

coset in A0/At/-../Aq consists of only one codeword

in A0. Hence the minimum squared Euclidean distance

of each coset is Aq = co. The minimum squared dis-

tance among the cosets of a coset in A0/AI/--./Aq-1

modulo Aq is Aq_t. The above partition process re-
sults in a sequence of q coset codes,

At = Ao/AI

A2 = Ao/Aa/A2

(4)

(5)
Aq = A0/A1/'-'/Aq

These q coset codes are used as inner codes in the pro-

posed q-level concatenated coded modulation scheme.

This q-level concatenated modulation code C is de-
noted as follows:

C a- {B1,B2,...,Bq)* {At,A2,...,Aq} (6)

If A0, At,.-., Aq-t have simple trellis diagrams, the

coset inner codes, At, A2, .-., Aq, also have simple trel-
lis diagrams. If the coset inner codes have simple trellis

structure, then we can use Viterbi decoding to decode

coset inner codes. This will decrease decoding com-

plexity of inner codes drastically.

III. MULTILEVEL CLOSEST COSET DECODING

A multilevel closest coset decoding for the proposed

scheme is presented in this section. Each level decod-

ing consists of the inner closest coset decoding and the

outer code decoding. At i-th level decoding, the inner

coset code Ai is decoded by using decoded estimates
from first level decoder to i- 1 th level decoder. In the

multilevel concatenated scheme, the i- 1 th level outer

code is designed to reduce the error propagation from
i- 1 th level decoder to i-th level decoder. Since de-

coded information at each level is passed to next level,

decoding at each.level depends on decoded information

from the preceding level. Therefore, error propagation

may occur. To reduce the probability of error propaga-
tion, outer codes must be selected by considering the

specific channel characteristic. In following sections,

multilevel concatenated codes are constructed by fol-

lowing rule. In the Rayleigh fading channel, strong
outer codes must used for levels where inner codes have

small minimum symbol and produ ct distances•

IV. EXAMPLE

Consider a two-level concatenated coded 8-PSK mod-

ulation system for the frequency non-selective Rayleigh

fading channel• In this system, two 3-1evel 8-PSK mod-

ulation codes of length 8 are used as the inner codes

and two RS codes over the Galois field GF(2 9) are

used as the outer codes as shown in Figure 3. The two



innercodesareconstructedfromtwo3-level8-PSK
modulationcodes,A0- A[(8,4,4)* (8,7,2)* (8,7,2)]
andA1 = A[(8,1, 8) * (8, 4, 4) * (8, 4, 4)]. A0 has di-

mension 18, minimum symbol distance 2, minimum

product distance 4, and minimum squared Euclidean
distance 2.344. And AI has dimension 9, minimum

symbol distance 4, minimum product distance 16, and

minimum squared Euclidean distance 4.688. A1 has a

very simple trellis structure and can be decoded in ei-

ther 3 stages, 2 stages, or one stage. Either way, the

decoding complexity is very simple.

Since (8,4,4) code is a subcode of (8,7,2) and (8,1,8)

is subcode of (8,4,4), A1 is a subspace of A0. Now, par-

tition A0 with respect to A1. Let A0/A1 denote this

partition. Then Ao/A1 consists of 29 cosets, denoted f_i

with 1 < i < 29, modulo At. Each coset in A0/AI has

a trellis structure identical to that of hi. Let [A0/A1]
denote the set of coset representatives of the cosets in

A0/AI. [A0/A1] is called a coset code. In the pro-

posed two-level concatenated coded 8-SK modulation

system, [A0/A1] is used as the first-level inner code and
A1 is used as the second-level inner code. Let C denote
this two-level concatenated coded modulation system.

The two outer codes used in the proposed system are

the (511,411,101) and (511,499,13) RS codes with sym-
bols from the Galois field GF(29). The (511,411,101)
RS code is used as the first-level outer code and the

(511,499,13) RS code is used as the second-level outer
code. Each code symbol can be represented by a binary
9-bits.

The spectral efficiency of the above two-level concate-

nated coded 8-PSK system is 2.0034 bits/symbol. Its

bit error performance over the frequency non-selective

Rayleigh fading channel using two-level closest coset

decoding is simulated and shown in Figure 4.

For comparison purpose, we construct a single-level

concatenated modulation code with A0 as inner code.

Since A0 has 18 information bits, (511,455,57) RS code

is used as outer code with interleaving depth 2. Each

symbols over GF(29) in outer code is converted into
an 9-bits. Then form an 511 by 18 array where each
column consists of 18 bits. Each column is then en-

coded into a codeword in A0. Let C(S) denote the

above single-level concatenated BCM code. The spec-
tral efficiency of the code C(S) is 2.0034 bits/symbol.

The error performance of the coherently detected 8-

PSK single-level concatenated modulation code C(S)

over the Rayleigh fading channel is also shown in Fig-
ure 4. The two-level concatenated modulation code C

achieves a 1.4757 dB real coding gain over the single-

level concatenated modulation code C(S) at a bit er-

ror rate (BER) 10 -s with the same spectral efficiency.

Also, two-level concatenated code achieves a 32.259

dB real coding gain at a BER 10 -5 over the uncoded

QPSK modulation without bandwidth expansion.

Other two-, three- and six-level concatenated BCM
schemes have been devised for the Rayleigh fading

channel and they all achieve very impressive real cod-

ing gains over the uncoded reference system and single-
level concatenated BCM schemes using same inner

codes.
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Figure 1 q-level concatenated block modulation code encoder
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Figure 2 The i-th level outer code encoder
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, Bit error performance of 8-PSK two-level concatenated
block modulation code over the frequency non-selective

Rayleigh fading channel.






