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A Modified pqsigRM: RM Code-Based
Signature Scheme

Yongwoo Lee, Wijik Lee, Young-Sik Kim, and Jong-Seon No

Abstract

We propose a novel signature scheme based on a modified Reed–Müller (RM) code, which reduces the signing
complexity and key size compared to existing code-based signature schemes. This scheme is called as the modified
pqsigRM, and corresponds to an improvement of pqsigRM, the proposal submitted to NIST. Courtois, Finiasz, and
Sendrier (CFS) proposed a code-based signature scheme using the Goppa codes based on a full domain hash approach.
However, owing to the properties of Goppa codes, the CFS signature scheme has drawbacks such as signing complexity
and large key size. We overcome these disadvantages of the CFS signature scheme using partially permuted RM code
and its decoding, which finds a near codeword for any received vector. Using a partially permuted RM code, the
signature scheme resists various known attacks on the RM code-based cryptography. Additionally, we further modify
the RM codes by row insertion/deletion of the generator matrix and thereafter resolve the problems reported in the
post-quantum cryptography forum by NIST, such as the Hamming weight distribution of the public code.

Index Terms

Code-based cryptography, Courtois, Finiasz, and Sendrier (CFS) signature scheme, digital signature, post-quantum
cryptography (PQC), Reed-Müller (RM) code

I. INTRODUCTION

RECENTLY, code-based cryptographic algorithms have been extensively studied as a post-quantum cryptography
(PQC). McEliece first proved the hardness of the syndrome decoding problem [18], and proposed a

cryptosystem based on Goppa codes [21]. In 2001, the Courtois, Finiasz, and Sendrier (CFS) signature scheme
was proposed [2]. The CFS signature scheme has certain drawbacks in terms of parameter scaling and a huge
signing complexity.

In the CFS signature scheme, an average of t! hashings and decodings are required for signing a message when
an pn, kq Goppa code with error correction capability t “ n´k

logn is used. Hence, t should be a relatively small value
to reduce the signing time. However, the complexity of a decoding attack is only a polynomial function of the key
size with small power, « keysizet{2. Thus, the key size should be increased significantly for security. Additionally,
with small t, the code rate becomes high and a high-rate Goppa code can be distinguished from a random code [3].
This falsifies the assumption of existential unforgeability under a chosen message attack (EUF-CMA) security proof
in [16], based on the indistinguishability of Goppa codes. Although Morozov et al. claim that the strong EUF-CMA
security of the CFS signature scheme without the indistinguishability of Goppa codes [17] is proved, their bad
parameters remain a drawback of the CFS signature scheme.

In order to solve the problems of the CFS signature scheme, we replace the Goppa code with a modified Reed–
Müller (RM) code, where its decoder can decode any received vector into not the closest but somewhat close
codeword. In general, an exact error correction is not necessary in code-based signature schemes. It is sufficient to
find an error vector with a sufficiently small Hamming weight for a given syndrome and the number of iterations to
find a decodable syndrome in the CFS signature scheme can be reduced by such an approach. Signature schemes
using such an approach were suggested in [5] and [7]. [5] did not suggest new code or corresponding decoding.
Instead, to keep the Hamming weight small enough, this signature scheme uses a sparse coset element added to a
small-Hamming-weight codeword and multiplies it by a specific matrix. It is efficient and has a small key size, but
an attack algorithm is known [4]. The attack algorithm for the signature scheme in [7] has also been proposed in
[6].
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There is a well-known decoder for the RM codes, named recursive decoding [14], [8], and this decoder finds
a codeword reasonably close to any given received vector. In this respect, the RM code-based signature scheme
is a solution for efficient code-based signature scheme. However, the simple replacement of the Goppa code with
the RM code results in vulnerability to several known attacks, such as the Minder–Shokrollahi attack [11] and the
Chizhov–Borodin attack [10].

Thus, we propose a new code-based signature scheme by using a modified RM code with a partially permuted
generator matrix with row insertions and deletions, referred to as a modified pqsigRM. The proposed signature
scheme not only overcomes the drawbacks of the CFS signature scheme, but also resists known attacks on RM
code-based cryptographic algorithms. By replacing the Goppa code in the CFS signature scheme with a modified
RM code, the required key size and signing time are significantly reduced. We also propose a new decoding
algorithm for the modified RM code. The decoding method does not guarantee exact error correction but returns
a near codeword for any given received vector. This implies that for any given syndrome, we can always find an
error vector with a small Hamming weight.

The signature scheme proposed in this work is an improved version that resolves the problems of early versions of
pqsigRM [1] submitted to the NIST PQC standardization. In the early versions, column puncturing and insertion were
applied to the parity check matrix of the original RM code. Therefore, post-processing was performed on the result
of the original RM code decoding, to make it suitable for the secret column puncturing and insertion. Although the
column puncturing and insertions are devised to prevent known attacks on RM code-based cryptographic algorithms,
a new attack algorithm that finds punctured columns and inserted positions was proposed in the NIST PQC forum.
Instead of column insertions and puncturing, we propose an efficient signature scheme using a modified RM code
with partial permutation and row insertion/deletion, which finds an error vector with a small Hamming weight for
any given syndrome. As a result, we are able to construct a new pqsigRM scheme that is secure both against the
attack found during the first round of standardization by NIST, as well as previously known attacks.

For some code-based cryptosystems, side channel attacks using leakage from decoding are known such as in [26].
The algorithm in this work is efficient and constant time algorithm. In addition, since the number of iterations
required is significantly reduced, signing process can be implemented at constant time. PQC has a lot of applications
such as real-time applications [25]. This algorithm is simple to operate and highly parallelizable, enabling efficient
hardware implementation.

The rest of this paper is organized as follows. In Section II, we present concepts of code-based signature scheme
and RM codes. The definition of partially permuted RM codes are given in Section III and the proposed signature
scheme is presented in Section IV. A method to make the public key indistinguishable from a random matrix is
provided by row insertions and deletions of a generator matrix is proposed in Section V. In Section VI, the security
of the proposed signature scheme is analyzed, including the EUF-CMA security. The paper is concluded in Section
VII.

II. PRELIMINARIES

A. CFS Signature Scheme

The CFS signature scheme is an algorithm created by applying the full domain hash methodology to the
Niederreiter cryptosystem. The CFS signature scheme is based on Goppa codes, as in the McEliece cryptosystem,
which is given in Algorithm 1.

As described in Algorithm 1, the signing process iterates until a decodable syndrome is found. The probability

that a given random syndrome can be decoded is
řt

i“0 p
n
iq

2n´k » 1
t! . Hence, the error correction capability t “ n´k

logn
should be small to reduce the number of iterations, and high-rate Goppa codes should thus be used. Regarding
the key size, the complexity of the decoding attack on the CFS signature scheme is known as small power of the
key size, « keysizet{2. Hence, the key size should be fairly large to meet a certain security level. In summary,
unfortunately, the CFS signature scheme is insecure and inefficient with Goppa codes.

B. Reed–Müller Code and Its Recursive Decoding

RM codes were introduced by Müller and Reed [22], [23]. A decoding algorithm, called recursive decoding, was
also proposed in [8]. There are a few definitions for RM codes, but we focus here on recursive definitions of RM
codes and recursive decoding using this structure.

The RM code RMpr,mq is a linear binary pn “ 2m, k “
řr
i“0

`

m
i

˘

q code, where r and m are integers.
RMpr,mq is defined as RMpr,mq “ tpu|u ` vq|u P RMpr,m ´ 1q, v P RMpr ´ 1,m ´ 1qu, where
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Algorithm 1 CFS signature scheme [2]
Key Generation:

hp¨q denotes a cryptographic hash function
H is the parity check matrix of an pn, kq Goppa code
The error correction capability t is n´k

logn

S and Q are an pn´ kq ˆ pn´ kq scrambler matrix and nˆ n permutation matrix, respectively
Public key: H 1 “ SHQ and t
Private key: H,S, and Q

Signing:
M is a message to be signed
i “ 1
Do
iÐ i` 1
Find syndrome s “ hphpMq|iq and compute s1 “ S´1s

Until a decodable syndrome s1 is found
Find an error vector satisfying He1T “ s1

* Compute eT “ Q´1e1T and then signature is pM, e, iq

Verification:
Check wtpeq ď t and H 1eT “ hphpMq|iq
If True, then return ACCEPT, else return REJECT

RMp0,mq :“ tp0, 0, . . . , 0q, p1, 1, . . . , 1qu with code length 2m and RMpm,mq :“ F2m

2 . This is a Plotkin’s
construction and its generator matrix is given as

Gpr,mq “

„

Gpr,m´ 1q Gpr,m´ 1q
0 Gpr ´ 1,m´ 1q



,

where Gpr,mq is the generator matrix of RMpr,mq.
The recursive decoding is a soft-decision decoding algorithm that depends on the recursive structure of the RM

codes and is described in detail in Algorithm 2, where y1 ¨ y2 denotes the component-wise multiplication of vectors
y1 and y2. In recursive decoding, a binary symbol a P t0, 1u is mapped onto p´1qa and it is assumed that all
codewords belong to t´1, 1un.

First, y2, the second half of the received vector y, is componentwise-multiplied by y1, the first half of the received
vector. Then, a codeword from RM pr,m´ 1q, i.e., u is removed from y2 and only v and the error vector are left.
This is considered as a codeword of RMpr ´ 1,m ´ 1q added to an error vector and reffered as v̂. Using v̂, we
can remove the codeword of RM pr´ 1,m´ 1q from the second half of received vector. y1 is then added to y2 ¨ v̂
and the sum is divided by 2. This is considered as a codeword of RMpr,m´ 1q added to the error vector and then
the decoding is performed. In the recursive decoding, the received vector is further divided into a shorter length,
such as n{4, n{8, and so on. Finally, we reach RMpm,mq or RMp0,mq and then the division is stopped. Clearly,
the minimum distance (MD) decoding of RMpm,mq or RMp0,mq is trivial. The decoding for the entire code is
performed by reconstructing these results into the pu|u` vq form.

III. PARTIALLY PERMUTED RM CODE AND ITS DECODING

In this section, we propose a new code, called a partially permuted RM code, and its decoder that decodes any
given received vector. Even if an undecodable syndrome is given, the decoding algorithm finds an error vector with
a reasonably small Hamming weight.

A. Partial Permutation and Generator Matrix of Partially Permuted RM Code

To construct the generator matrix of the partially permuted RM code, we permute the columns of submatrices
of Gpr,mq. An example of the generator matrix of the code is given in Figure 1. We define partial permutation
as a permutation that randomly permutes only some of the columns. Let σ1

p and σ2
p be two independent partial

permutations that randomly permute only p columns out of n{4 columns. To generate σ1
p and σ2

p, p elements are
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Algorithm 2 Recursive decoding of RM code [8]
function RECURSIVEDECODING(y, r,m)

if r “ 0 then
Perform MD decoding on RMp0,mq

else if r “ m then
Perform MD decoding on RMpm,mq

else
py1|y2q Ð y
yv “ y1 ¨ y2

v̂ Ð RECURSIVEDECODING(yv, r ´ 1,m´ 1)
yu Ð py1 ` y2 ¨ v̂q{2
ûÐ RECURSIVEDECODING(yu, r,m´ 1)
Output pû|û ¨ v̂q

end if
end function

randomly selected from the index set t0, 1, . . . , n{4´ 1u and the selected elements are randomly permuted, while
others are not. Then, σ1

p is used to permute the submatrices of Gpr,mq corresponding to Gpr,m´ 2q1s in the first
row and σ2

p is used to permute Gpr´2,m´2q in the last row, as in Figure 1. The generator matrix for this partially
permuted RM code is shown in Figure 1.

B. Decoding of Partially Permuted RM Code

Complete decoding is applied to the CFS signature scheme [2], where it returns the closest codeword for any
given vector. If complete decoding is possible, a coset leader can be found for any syndrome. In other words, for
a code with the error correction capability t, complete decoding can succeed even if t` δ errors exist. In general,
it is difficult to design a code with a complete decoder, which is adequate for a code-based signature scheme.

In the CFS signature scheme, complete decoding for the Goppa codes is implemented as follows: the addition
of δ errors is equivalent to adding δ randomly chosen columns from the parity check matrix to the syndrome.
Because there are n ´ k linearly independent columns and δ can be a large number, adding δ columns can be
any pn´ kq-tuple binary vector. Hence, adding δ columns to the syndrome is also equivalent to adding a random
vector to the syndrome. Clearly, adding a random vector to the syndrome is equivalent to the generation of a new
random syndrome, which is implemented as s “ hphpMq|iq by updating a counter i. However, because the Goppa
code decoder can still correct errors with Hamming weight less than or equal to t, the probability that the random

syndrome is decoded is
Σt

i“1p
n
iq

nt » 1
t! . Therefore, approximately t! syndromes need to be generated and decoded

for successful signing.
For the proposed partially permuted RM code, which is simple, scalable, and resistant to structure attacks, there

is an algorithm for decoding any received vector. Although this decoding algorithm finds a codeword fairly close to
the received vector, it does not always find the nearest codeword. Therefore, the Hamming weight of the decoded
error may be large in some cases. Because a valid signature should have a small Hamming weight to prevent forgery,
new syndromes are generated until an error vector with a Hamming weight less than or equal to a certain value
w is found. Note that the decoding algorithm efficiently finds an error vector with a small Hamming weight for
any given syndrome. Hence, it is guaranteed that signature can be successfully generated in dozens to hundreds of
iterations, as described in Subsection IV-D. Additionally, because adversaries do not know the decoding algorithm,
information set decoding attacks are the best attack algorithms.

The difference between the CFS signature scheme and pqsigRM in decoding is as follows. In the CFS signature
scheme, the Hamming weight of the error vector is less than or equal to t and thus the iterations are performed
until a decodable syndrome is found. However, in pqsigRM, the signer can decode all syndromes, but repeats until
an error with a small Hamming weight w, which may be larger than t, is found to prevent forgery.

When the subcode of the RM code is replaced with its own permutation, the entire code can also be decoded
by slightly modified recursive decoding [14]. Moreover, no decoding failure occurs. This is because the recursion
eventually reaches RMp0,mq or RMpm,mq and these codes are the MD-decodable codes. We can say that c “
pu|u`vq for all c P RMpr,mq, where u P RMpr,m´1q and v P RMpr´1,m´1q. Recursively, RMpr,m´1q and
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𝐺 𝑟,𝑚 − 2 '() 𝐺 𝑟,𝑚 − 2 '() 𝐺 𝑟,𝑚 − 2 '() 𝐺 𝑟,𝑚 − 2 '()

0 𝐺(𝑟 − 1,𝑚 − 2) 0 𝐺(𝑟 − 1,𝑚 − 2)

0 0 𝐺(𝑟 − 1,𝑚 − 2) 𝐺(𝑟 − 1,𝑚 − 2)

0 0 0 𝐺 𝑟 − 2,𝑚 − 2 '(.

Fig. 1: Partially permuted generator matrix GM of RM code RMpr,mq for the proposed signature scheme.

RMpr´ 1,m´ 1q are also pu|u` vq-structured codes, except for r “ 0 or r “ m. Here, if the code corresponding
to u or v is replaced with a code other than the RM code, and the decoding of the replaced code is appropriately
performed, the entire code c can also be decoded [14].

When a code is decodable, its permutation is always decodable when the permutation is known. From this point
of view, we define the partially permuted RM code as tpu|u ` vq|u P U, v P V u, where V “ tpu|u ` vq|u P

RMpr,m´ 2qσ
1
p , v P RMpr ´ 1,m´ 2qu and U “ tpu|u` vq|u P RMpr ´ 1,m´ 2q, v P RMpr ´ 2,m´ 2qσ

2
pu.

Here, σ1
p and σ2

p are partial permutations. The proposed signature scheme uses the partially permuted RM code or
modified RM code, as described later, instead of the Goppa code of the CFS signature scheme.

A new decoding algorithm for this code is given in Algorithm 3. The decoding of partially permuted RM
codes is possible from the recursive structure of the RM code. Because a permuted code can be decoded using
a sequential process of depermutation-decoding-repermutation, every building block of the partially permuted RM
code is decodable.

IV. PQSIGRM SIGNATURE SCHEME WITH PARTIAL PERMUTATION

In this section, we propose a new code-based signature scheme using the partially permuted RM code rather than
the Goppa code. The parameter sets for 128, 192, and 256-bit security levels are given and the numerical method
to determine the parameters is suggested. In addition, a constant-time signing algorithm is proposed to prevent side
channel attacks.

A. Partially Permuted pqsigRM Signature Scheme

1) Key Generation: We randomly generate partial permutations σ1
p and σ2

p. Using σ1
p and σ2

p, a partially permuted
generator matrix of RMpr,mq is generated as in Figure 1 and denoted as GM. Thereafter, the dual matrix of the
partially permuted generator matrix GM becomes the parity check matrix HM. Let S be an pn ´ kq ˆ pn ´ kq
random nonsingular matrix and Q be an nˆ n random permutation matrix. Then, the public key is H 1 “ SHMQ
and the private keys are HM, S,Q, σ1

p, and σ2
p.

Using partially permuted RM codes, the proposed signature scheme resists known attacks on RM code-based
cryptographic algorithms, such as the Minder–Shokrollahi and Chizhov–Borodin attacks. The subcode to be
permuted is designed to keep the dimension of the hull of the code generated by GM large and it enables the
system to resist the known attacks on pu|u` vq-structured codes [13].
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Algorithm 3 Decoding for partially permuted RM code
function PARTPERMDEC(y, r,m)

y Ð yσ
´1

if r “ 0 then
Perform MD decoding on RMp0,mq

else if r “ m then
Perform MD decoding on RMpm,mq

else
py1|y2q Ð y
yv “ y1 ¨ y2

v̂ Ð PARTPERMDEC(yv, r ´ 1,m´ 1)
yu Ð py1 ` y2 ¨ v̂q{2
ûÐ PARTPERMDEC(yu, r,m´ 1)
y Ð pû|û ¨ v̂q

end if
Output yσ

end function
* σ is σ1

p or σ2
p for permuted block and identity, otherwise.

TABLE I: Parameters for each security level

security pr,mq pn, kq w p

pqsigRM-5-11 128 (5, 11) (2048, 1024) 306 129
pqsigRM-6-12 192 (6, 12) (4096, 2510) 467 385
pqsigRM-6-13 256 (6, 13) (8192, 4096) 1400 561

2) Signing: To sign a given message M , randomly choose i from t0, 1un´k. A binary vector s “ hphpM |H 1q|iq
is calculated, where h : t0, 1u˚ Ñ t0, 1un´k is a cryptographic hash function. Our goal is to find the error vector e
satisfying H 1eT “ SHMQeT “ s. Let us take s1 “ S´1s. Performing the decoding as in Algorithm 3, we find an
error vector e1 satisfying HMe1T “ s1. If wtpe1q ď w, we compute eT “ Q´1e1T , and the signature is then given
as pM, e, iq. Otherwise, the decoding process is repeated by choosing another i. It is worth noting here that unlike
the CFS signature scheme, updating i is not due to decoding failure, but to find a syndrome that can be decoded
into an error vector with a Hamming weight less than or equal to w.

3) Verification: If wtpeq ď w and H 1eT “ hphpM |H 1q|iq, we return ACCEPT and REJECT, otherwise.
The key generation, signing, and verification processes are described in Algorithm 4.

B. Parameter Sets

The parameters of the proposed signature scheme consist of r,m,w, and p. It should be noted that n, k, and dmin
are derived directly from r and m as 2m,

řr
i“0

`

m
i

˘

, and 2pm´rq, respectively. As given in Table I, the parameter sets
of the partially permuted pqsigRM signature schemes are proposed for 128, 192, and 256-bit security levels. These
are referred to as pqsigRM-5-11, pqsigRM-6-12, and pqsigRM-6-13, respectively, and their generator matrices are
given in Figure 2. It is noted that the larger the weight parameter w, the faster the signing time, but the smaller w,
the higher the security level. Here, w is derived to satisfy the desired security level based on the attack algorithm
by Stern [12], which is described in Section VI-A. It is also noted that the smaller the value of p, the shorter
the signing time, but the lower the randomness. If p is large, the signing time increases. We can see that some
characteristics of the codes are retained by lowering p to a certain extent, which will be described in Section IV-C.

C. Statistical Analysis for Determining Parameter p

The hull of a code is defined as the intersection of the code and its dual code. The public code of the proposed
signature scheme refers to the code that its parity check matrix is the public key of the proposed signature scheme.
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𝐺 5,9 %&' 𝐺 5,9 %&' 𝐺 5,9 %&' 𝐺 5,9 %&'

0 𝐺(4,9) 0 𝐺(4,9)

0 0 𝐺(4,9) 𝐺(4,9)

0 0 0 𝐺 3,9 %&-

(a) Partially permuted generator matrix GM for 128-bit security level.

𝐺 6,10 &'( 𝐺 6,10 &'( 𝐺 6,10 &'( 𝐺 6,10 &'(

0 𝐺(5,10) 0 𝐺(5,10)

0 0 𝐺(5,10) 𝐺(5,10)

0 0 0 𝐺 4,10 &'-

(b) Partially permuted generator matrix for 192-bit security level.

𝐺 6,11 %&' 𝐺 6,11 %&' 𝐺 6,11 %&' 𝐺 6,11 %&'

0 𝐺(5,11) 0 𝐺(5,11)

0 0 𝐺(5,11) 𝐺(5,11)

0 0 0 𝐺 4,11 %&-

(c) Partially permuted generator matrix for 256-bit security level.

Fig. 2: Generator matrices of partially permuted RM codes.
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Algorithm 4 Partially permuted pqsigRM signature scheme
Preprocessing:

For a given partially permuted pn, kq RM code and the security level, derive w for successful signing as in
Table I.

Key Generation:
Generate random partial permutations σ1

p and σ2
p

Using σ1
p and σ2

p, generate a partially permuted generator matrix GM
Generate HM from GM
Generate S and Q
Compute H 1 “ SHMQ
Private key: HM, S,Q, σ1

p, and σ2
p

Public key: H 1, w
Signing:

M is a message to be signed
Do
i
R
ÐÝ t0, 1un´k

Find syndrome s “ hphpM |H 1q|iq and compute s1 “ S´1s
Perform decoding and find an error vector e1 satisfying HMe1T “ s1

Until e1 is found such that wtpe1q ď w
* Compute eT “ Q´1e1T and then signature is pM, e, iq

Verification:
Check wtpeq ď w and H 1eT “ hphpM |H 1q|iq
If True, then return ACCEPT, else return REJECT

TABLE II: Dimension of hull of partially permuted pqsigRM’s public coderRMpr,mq with p “ n{4

(n ,k) dim(hull) dim(hullrRM)
pqsigRM-5-11 (2048, 1024) 766 129
pqsigRM-6-12 (4096, 2510) 1236 385
pqsigRM-6-13 (8192, 4096) 2974 561

For the partially permuted RM code, its hull is overlapped with (not a subset of) the original RM code. If the
hull is a subset of the original RM code and its dimension is large, the minimum-Hamming-weight codeword of the
original RM code may be included in the hull. Then, the Minder–Shokrollahi attack might be applied using such
minimum-Hamming-weight codewords. Therefore, to prevent the Minder–Shokrollahi and Chizhov–Borodin attacks,
the hull of the public code should not be a subset of the original RM code and hull of public coderRMpr,mq
permuted by Q must occupy a large portion of the hull, where r denotes the relative complement.

Because the permutation Q is not important to the analysis for determining the parameter p, we ignore Q in this
subsection, and permutation implies the partial permutations σ1

p and σ2
p. When p is n{4, which means that σ1

p and
σ2
p are full permutations, the dimension of the hull and the dimension of hull of public coderRMpr,mq are given

in Table II. The value of the dimensions in Table II might be slightly changed according to the permutation.
If p is small, the Hamming weight of the errors decreases. Hence, the signing time can be reduced by using

partial permutation with p rather than full permutation. We want to find a smaller value for p maintaining the
dimension of hull of public coderRMpr,mq as large as with full permutation. We can see that the average of the
dimension of hull of public coderRMpr,mq tends to increase as p increases and is saturated when p is above a
certain value in Figure 3. More specifically, the dimension of hull of public coderRMpr,mq is saturated when
p is the approximately the average dimension of hull of public coderRMpr,mq for full permutation. Hence, for
pqsigRM-5-11, pqsigRM-6-12, and pqsigRM-6-13, we determine p as 129, 385, and 561, respectively, as in Table
I.
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(a) Dimension of hull of public coderRMp5, 11q for pqsigRM-5-11.
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(b) Dimension of hull of public coderRMp6, 12q for pqsigRM-6-12.
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Fig. 3: Dimension of hull of public coderRMpr,mq for each parameter set.
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Fig. 4: Distribution of Hamming weights of decoded results among 105 trials for pqsigRM-5-11. The gray line
shows a normal distribution with the same mean and variance.

D. Number of Iterations for the Signature and Constant-Time Algorithm

Let N be the number of iterations for decoding that guarantees successful signing. In the proposed signature
scheme, signatures can be generated within only a few iterations. However, in this case, the time taken for signature
is not a constant time. To prevent side channel attack due to the non-constant signing time, the number of iterations
for decoding is fixed to N , even when the successful signature is obtained before N iterations. In this section,
we find the number of iterations that guarantees successful signing. Because the recursive decoding algorithm is a
constant-time algorithm, we can design a constant-time signing algorithm for the proposed signature scheme with
a fixed number of iterations.

The signing is successful if the Hamming weight of the error vector from decoding the partially permuted RM
code is less than or equal to w for the hashed message with a random number i, s “ hphpM |H 1q|iq. Letting Xj

be the Hamming weight of the error vector for the jth counter, the probability of successful signing is given by

Pr

"

min
jďN

pXjq ď w

*

“ 1´ pPrtXi ą wuq
N
, (1)

where each Xj is assumed to be independent and identically distributed. The probability PrtXi ą wu can be
numerically obtained by the distribution of Hamming weights of the decoded results. For 128-bit security, the
distribution of Hamming weights of the decoded errors is numerically obtained as in Figure 4. Also, the probability
of finding a valid signature in a single trial and the value of N that guarantees successful signing can be numerically
found as listed in Table III.

Let us compare the minimum number of iterations that guarantees successful signing in the proposed signature
scheme and the CFS signature scheme. Let us consider the security of the CFS signature scheme to be approximately
given by 2mt, and using the fact that t “ n´k

logn , we can derive some parameter sets for 128-bit security as in Table
IV. The first option in the table is to make the key size similar to pqsigRM. In this case, the number of iterations is
109, which is impossible to implement. However, t “ 9 is suggested in [2], which is the second option in the table.
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TABLE III: Parameter N that guarantees successful signing

w
success prob.
of single trial

target failure
probability N

pqsigRM-5-11 306 0.02788 ď 2´128 3138
pqsigRM-6-12 467 0.13833 ď 2´192 894
pqsigRM-6-13 1400 0.99997 ď 2´256 18

TABLE IV: Minimum number of iterations that guarantees successful signing in CFS signature scheme with 128-bit
security level

pn, kq key size t N

CFS
p211, 211 ´ 121q 512 KB 11 ě 109

p214, 214 ´ 126q 32 MB 9 ě 107

p225, 225 ´ 125q 128 TB 5 ě 104

pqsigRM p211, 210q 256 KB 307 3138

There are still many more iterations that are required to ensure success and the key size is hundreds of bytes. The
last option is to match the number of iterations with pqsigRM. Here, we can see that the key size is infeasible. With
the CFS signature scheme, it is very difficult to build a signature scheme that guarantees the successful signing in
a constant time, but it can be implemented in a reasonable time with pqsigRM. As shown in Table III, successful
signing is even guaranteed within a few dozen times in certain parameter sets.

V. INDISTINGUISHABLE VARIANTS OF PQSIGRM

The proof of the EUF-CMA security of the partially permuted pqsigRM requires the indistinguishability of the
public code of pqsigRM from a random code. Hence, we will discuss how to design an indistinguishable public
code of pqsigRM in this section.

Any pu|u`vq-structured code used in code-based cryptosystems should have a high-dimensional hull for security,
and the public code of pqsigRM should be designed to have a pu|u ` vq structure for efficient decoding without
failure. The partially permuted RM code has a pu|u` vq structure, which enables recursive decoding. As shown in
[13], for any pu|u ` vq-structured code, i.e., tpu|u ` vq| all u P U, all v P V u, when UK X V “ t0u, the hull of
the public code is highly probable to have a pu|uq structure, where K denotes the dual code. This pu|uq structure
reveals information of the permutation Q. To avoid such a disadvantage, we should maintain the high dimension
of UK X V , which means that the dimension of the hull of the public code is high. Hence, we design the public
code of pqsigRM as indistinguishable from a random code of which the hull dimension is the same as that of the
public code, rather than any random linear code.

The Goppa Code Distinguishing Problem is a key underlying problem for the security of the McEliece
cryptosystem. In general, the indistinguishability is assumed to be hold, but it has not been proved. Instead, the
Hamming weight distribution of the Goppa code is considered as evidence for the indistinguishability [19]. It is
certain that the Hamming weight distribution of the Goppa code is a binomial distribution, which is the Hamming
weight distribution of a random code.

To design the public code of pqsigRM having a binomial Hamming weight distribution, we perform three
modifications on its generator matrix as follows:

i) A random row with odd Hamming weight is appended to the generator matrix.
ii) A random codeword chosen from its dual code is added as a row of the generator matrix.

iii) One row of the generator matrix other than the above two added rows is removed to replace the subcode.
These modifications are assumed to make the public code indistinguishable from a random code whose hull
dimension is the same as that of the public code.

A. Appending a Row With Odd Hamming Weight

The Hamming weight distribution of the public code of pqsigRM should be a binomial distribution, which is
the Hamming weight distribution of a random code. However, the partially permuted RM code has only codewords
with even Hamming weight. This is because the Hamming weights of codewords of RM pr,mq are even numbers,
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except for r “ m, and the codewords of the permuted RM codes are the same. From a numerical analysis, we can
see that the Hamming weight distribution of the public code of pqsigRM is a binomial distribution of even values.

By appending a random row with odd Hamming weight to the generator matrix, we make the Hamming weight
distribution of the public code a binomial distribution. This requires a slight modification of the signing process.
By adding a random row with odd Hamming weight to the generator matrix, the code dimension k is increased by
one and the decoding should be modified. Let codd be the appended random row with odd Hamming weight and C
be the public code before adding codd. By appending codd, the code becomes C ` t0, coddu, i.e., C \ pC ` coddq.
The decoding is performed for both the received vector y and y ` codd. That is, the decoding algorithm performs
PARTPERMDEC in Algorithm 3 twice and returns the error with a smaller Hamming weight.

B. Adding a Random Codeword of Dual Code

The Hamming weights of codewords in the hull of the partially permuted RM code are only multiples of 4.
However, codewords in the hull of a random code have even Hamming weight, not only multiples of 4. Similar
to Subsection V-A, a random codeword is appended to the hull. By appending a random codeword to the hull, we
force codewords of the hull of the public code to have even Hamming weights, not only multiples of 4.

Appending a codeword to the hull is more complicated than appending a codeword to the code. The following
procedure explains how to append a random codeword to the hull. Let Chull be the hull of a code C. Then, we
define C 1 and C2 by C “ Chull ` C 1 and CK “ Chull ` C2, where Chull, C 1, and C2 are linearly independent
subsets. We can then generate a code with a hull dimension of dimpChullq ` 1 by the following procedure:

i) Find a codeword cdual P C2 such that cdual ¨ cdual “ 0. It is easy to find such codeword, because a codeword
with even Hamming weight satisfies cdual ¨ cdual “ 0.

ii) Let Cinc “ C ` tcdualu “ pChull ` tcdualuq ` C
1.

iii) Because cdual ¨ pChull ` tcdualuq “ t0u and cdual ¨ C 1 “ t0u, cdual P CKinc, where for a vector x and a set of
vectors A, x ¨A is the set of inner products of x and elements of A.

iv) We can see that Cinc X CKinc “ pChull ` tcdualuq. Hence, Cinc is a code that has a hull dimension of
dimpChullq ` 1.

Using the above method, we can generate codewords in the hull of pqsigRM with even Hamming weight, not
only multiples of 4. A numerical analysis shows that the Hamming weight distribution of codewords in the hull
follows a binomial distribution of even values. If the Hamming weights of the codewords of the hull are only
multiples of 4, another cdual is selected and the process is repeated.

C. Reducing Dimension of Public Code by One

The codewords of the dual code of the partially permuted RM code have only an even Hamming weight. This
is due to a subcode of the partially permuted RM code, and we solve this problem by replacing this subcode with
another code whose MD decoder exists. The public code includes pRMpr, rq| . . . |RMpr, rqq, whose dual code has
only codewords of even Hamming weight, as given in theorem below. It is trivial that the dual code of the public code
is a subset of the dual code of pRMpr, rq| . . . |RMpr, rqq. This means that the repeated part pRMpr, rq| . . . |RMpr, rqq
causes the dual code to have only codewords of even Hamming weight.

Theorem 1. Let C be a code whose dual code has only codewords of even Hamming weight. Then, the dual code
of a concatenated code of two codes, tpc|cq|c, c P Cu, has only codewords of even Hamming weight.

Proof. Let h P pC|CqK, where C is an pn, kq code and C|C is a concatenated code given as tpc|cq|c P Cu. We
define vectors of length n, h1, and h2 by h “ ph1|h2q. It is obvious that if h1 P C

K, then h2 P C
K. If h1 R C

K,
we have h1 ¨ c` h2 ¨ c “ 0, i.e., h1 ¨ c “ h2 ¨ c. This implies that h1 “ h2. Hence, wtphq is even.

By replacing the repeated RMpr, rq with another code whose dual code has codewords of odd Hamming weight,
we can force the dual of the public code to have odd-Hamming-weight codewords.

By definition, the dual code of RMpr, rq is t0u. We replace RMpr, rq with a pn1, k1q code, which can be decoded
by MD decoding. A simple example is given, where k1 “ n1´ 1. The MD decoding of this code can be performed
by the following process:

i) Let t0, h “ ph1, . . . , h
1
nqu be the dual of an pn1, n1 ´ 1q code.

ii) For a received vector y, select an index such that hi “ 1 and then the nearest codeword is y´p0, . . . , hi, . . . , 0q
when the syndrome of y is not zero.
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Fig. 5: Generator matrix of the modified RM code.

iii) y is a codeword, otherwise.
We can generate an pn1, n1´ 1q random code for our purpose by generating a random vector h with odd Hamming
weight. Assume that h “ p1, h2, . . . , h

1
nq, which corresponds to the parity check matrix. Then, its generator matrix

is given as
Gred “

“

ph2, . . . , h
1
nq
T | In1´1

‰

.

The generator matrix is easy to find even if h1 “ 0.
The RM code with all the modifications in Subsections V-A, V-B, and V-C, together with partial permutation is

called the modified RM code. The generator matrix of the modified RM code is described in Figure 5.

D. New Decoding Algorithm

To apply the above-mentioned modification to the public code, the processes of the proposed signature scheme,
pqsigRM, should be changed accordingly to adapt to the modified decoding algorithm. Let Hmod be the parity
check matrix of the modified RM code. Then, the public key H 1 is given by H 1 “ SHmodQ and its decoding
algorithm is given in Algorithm 5.

VI. SECURITY ANALYSIS OF MODIFIED PQSIGRM
In this section, the security of the modified pqsigRM is analyzed. The information set decoding, which is the

most general and well-known attack on the code-based cryptosystem is first considered. Thereafter, we show that
the modified pqsigRM is resistant to known attacks on cryptosystems based on the RM code, owing to the partial
permutation and modifications. Finally, it is shown that the modified pqsigRM is EUF-CMA secure.

A. Analysis of Information Set Decoding Attack

Information set decoding is a brute-force attack method that finds the error vector e such that HeT “ s and
wtpeq ď w, where Stern improved the attack complexity [12]. Although more efficient information set decoding
methods than Stern’s algorithm have been proposed, Stern’s algorithm is the most universal and simple to use. Thus,
the security of the modified pqsigRM against information set decoding is analyzed based on Stern’s algorithm.

The complexity of Stern’s algorithm is given as

CSternpg, lq :“ Kl

ˆ

k{2

g{2

˙

and the success probability when there is one and only one such error vector is

PrSternpg, lq :“

`

k{2
g{2

˘2`n´k´l
w´g

˘

`

n
w

˘ ,
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Algorithm 5 Decoding for modified RM code
function DECODE(y)

ErrSetÐ tpy ` cq ´MODDEC(y ` c, r,m)
|c P t0, rodd, rdual, rodd ` rdualuu

Output argminePErrSet wtpeq
end function

function MODDEC(y, r,m)
y Ð yσ

´1

if r “ 0 then
Perform MD decoding on RMp0,mq

else if r “ m then
Perform MD decoding on RMpm,mq
or using Gred

else
py1|y2q Ð y
yv “ y1 ¨ y2

v̂ Ð MODDEC(yv, r ´ 1,m´ 1)
yu Ð py1 ` y2 ¨ v̂q{2
ûÐ MODDEC(yu, r,m´ 1)
y Ð pû|û ¨ v̂q

end if
Output yσ

end function
*σ is σ1

p or σ2
p for permuted block and identity, otherwise.

*For the replaced subcode as in Figure 5, MD decoding is performed using Gred.

TABLE V: Work factor for the proposed parameters

pn, k, dmin, wq optimal g WF
pqsigRM-5-11 (2048, 1024, 32, 306) 26 2128

pqsigRM-6-12 (4096, 2510, 64, 467) 64 2192

pqsigRM-6-13 (8192, 4096, 128, 1400) 136 2280

where l “ log
`

k{2
g{2

˘

, g is an integer that can be adjusted to minimize the complexity, and the hidden parameter K
is considered as logn

2 for the actual computation. However, in the modified pqsigRM, there are many n-tuple error
vectors with Hamming weight less than or equal to w for each syndrome. The number of n-tuple error vectors

with Hamming weight less than or equal to w for a given syndrome is approximately given by
řw

i“0 p
n
iq

2n´k »
pnwq

2n´k .
Hence, the success probability of Stern’s algorithm is approximately given as

PrSternpg, lq

`

n
w

˘

2n´k
“

`

k{2
g{2

˘2`n´k´l
w´g

˘

2n´k
.

Dividing complexity of Stern’s algorithm WF by the probability above, the computational complexity for Stern’s
algorithm is given by

WF “ Kl
2n´k

`

k{2
g{2

˘`

n´k´l
w´g

˘
.

The value of WF for each parameter set of the modified pqsigRM is given in Table V.

B. Analysis of Known Attacks

The Minder–Shokrollahi [11] and Chizhov–Borodin [10] attacks are well-known attacks for RM code-based
cryptosystems, which decompose the public key H 1 “ SHQ into the private keys S,H, and Q. In addition, the



15

square code attack [9] can also be applied to RM code-based cryptosystems with random column insertion. As
the modified pqsigRM does not rely on random column insertion or code puncturing, we do not need to consider
attacks that target punctured or inserted RM codes, such as the square code attack. We show that our modified
pqsigRM algorithm is secure against the Minder–Shokrollahi and Chizhov–Borodin attacks.

1) Minder–Shokrollahi Attack: One of the major objects of the attack on the McEliece cryptosystem is to find the
permutation matrix Q. Let RMpr,mqQ be the partially permuted code of RMpr,mq for some unknown permutation
Q. In the Minder–Shokrollahi attack, the attack procedure to find a permutation Q consists of three steps as follows:

i) Find codewords in RMpr,mqQ that belong to RMpr ´ 1,mqQ. It is required to find enough such codewords
to build a basis of RMpr ´ 1,mqQ.

ii) Iterate the previous step until RMp1,mqQ is obtained.
iii) Find a permutation η such that RMp1,mqQ¨η “ RMp1,mq. This implies η “ Q´1. Then, we have

RMpr,mqQ¨η “ RMpr,mq.
It is clear that the first step is crucial for the success of this attack. Let x P C be a minimum-Hamming-weight

codeword.
The minimum-Hamming-weight codewords are used in the first step of the Minder–Shokrollahi attack. The

algorithm to find RMpr ´ 1,mqQ from RMpr,mqQ is based on the following proposition.

Proposition 2 ([11]). Let f P RMpr,mq be a minimum-Hamming-weight codeword. Then, there exist f1, f2, . . . , fr P
RMp1,mq such that

f “ f1 ¨ f2 ¨ ¨ ¨ fr,

where the fi are the minimum-Hamming-weight codewords of RMp1,mq in function form.

However, the properties of the minimum-Hamming-weight codewords are different because of the partially
permuted submatrix of the generator matrix. Therefore, Proposition 2 is not true for the modified RM code with
partially permuted generator matrix.

Because the minimum Hamming weight of the original RM code is 2m´r, one might consider attempting the
same attack by finding the codeword with Hamming weight 2m´r of the public code. In fact, among the minimum-
Hamming-weight codewords of the public code, there are codewords that are not affected by partial permutation.
For example, as we can see in the generator matrix shown in Subsection II-B, the codewords with two repetitions
of minimum-Hamming-weight codewords of RMpr,m ´ 1q are not only codewords of the original RM code, but
also of the public code, and are not affected by the partial permutation. However, the number of such codewords is
only approximately 1{2r of all the minimum-Hamming-weight codewords of the original RM code. Furthermore,
because there are many more codewords than the minimum-Hamming-weight codewords and half of the elements of
each codeword are modified, the Hamming weight distribution of codewords has been randomly changed.Therefore,
it is difficult to find codewords with Hamming weight 2m´r satisfying Proposition 2. Thus, enough independent
codewords to generate RMpr ´ 1,mqQ cannot be found, owing to the partial permutation of the RM code.

In conclusion, the modified pqsigRM is resistant to the Minder–Shokrollahi attack, because it cannot perform
the process of finding RMpr ´ 1,m) in RMpr,mq.

2) Chizhov–Borodin Attack: From an RM code RMpr,mq, RMp2r,mq can be constructed with low polynomial-
time complexity. Similarly, RMpkr,mq can easily be constructed. Moreover, RMpm ´ r ´ 1,mq, a dual code
of RMpr,mq, can also be constructed in low polynomial-time complexity. Thus, RMpkr ` lpm ´ 1q,mq can be
obtained and finally, we have RM(gcdpr,m ´ 1q,mq. If gcdpr,m ´ 1q “ 1, then RMp1,mq is directly found.
Otherwise, RMpr ´ 1,mq can be obtained by the Minder–Shokrollahi attack. By iterating this procedure until we
have gcdpr ´ k,m´ 1q “ 1, RMp1,mq can be found. It is then straightforward to find the permutation η, that is,
Q´1 [10].

However, the dual of the public code of the modified pqsigRM is not an RM code. Moreover, the algorithm to
generate RMpr1 ` r2,mq using RMpr1,mq and RMpr2,mq is not applicable to the public code, because it is not
an RM code. Therefore, the Chizhov–Borodin attack is not applicable to the modified pqsigRM.

C. Security Against Key Substitution Attack

An attack that finds a valid key different from the correct key that satisfies the verification for a message signature
pair is called a key substitution attack. If the adversary knows the private key and the public key corresponding to
the message and signature pair, it is called a weak-key substitution attack, and if he knows only the public key, it is
called a strong-key substitution attack. Both polynomial-time weak- and strong-key substitution attacks on the CFS
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signature scheme were proposed in [20]. A modification that resists the attack was also proposed in [20]. In this
modification, the syndrome s is generated by hashing the message, counter, and public key, rather than only hashing
the message and counter. It is shown that this modified CFS signature scheme is secure against key substitution
attacks [17]. In the modified pqsigRM, the syndrome is given as s “ hphpM |H 1q|iq, and therefore it is also secure
against key substitution attacks.

D. Security Against Existential Forgeries

In this subsection, we prove the EUF-CMA security of the modified pqsigRM by applying Dallot’s proof for the
EUF-CMA security of the CFS signature scheme [16]. Because the used codes are different, the EUF-CMA security
of the modified pqsigRM can be proved differently from that of the CFS signature scheme. However, because the
proofs are almost the same, the parts overlapping with the existing one are omitted.

EUF-CMA is a usual attack model against signature schemes. An EUF-CMA is viewed as a game played
between the adversary and challenger. The public key PK, hash oracle H, and signing oracle Σ are given to a
pτ, qH, qΣq-adversary A, where A can query qH hash values and qΣ signatures for inputs of his own choice. Within
a maximum τ computation time, A tries to find a valid message signature pair pm˚, σ˚q. A wins the game if
Verifyingpm˚, σ˚, PKq “ 1 and σ˚ has not been provided by Σ, and the challenger wins the game, otherwise. A
signature scheme is pε, τ, qH, qΣq-EUF-CMA secure if for any pτ, qH, qΣq-adversary A, the probability that A wins
the game is less than or equal to ε.

In [16], finding an existential forgery of the CFS signature scheme under the CMA has been reduced to the
Goppa Code Distinguishing Problem and Goppa Parameterized Bounded Decoding Problem, which are defined as:

Definition 3. (Goppa Code Distinguishing Problem [16])
Input: An pn´ kq ˆ n parity check matrix H 1

Output: A bit b P t0, 1u where b “ 1 if H 1 “ SHQ, where H is the parity check matrix of a Goppa code, S is an
pn´ kq ˆ pn´ kq permutation matrix, and Q is an nˆ n permutation matrix, and b “ 0, otherwise.

Definition 4. (Goppa Parameterized Bounded Decoding Problem [16])
Input: An pn´ kq ˆ n parity check matrix H 1 and a syndrome s P Fn´k2

Output: A word e P Fn2 such that wtpeq ď n´k
log n and H 1eT “ s.

However, as an efficient algorithm that distinguishes high-rate Goppa codes from random codes has been proposed,
it is shown that the Goppa Code Distinguishing Problem is not a hard problem and thus the proof of Dallot is
disabled.

A new proof of strong EUF-CMA of the CFS signature scheme that does not rely on the Goppa Code
Distinguishing Problem is proposed [17]. This proof reduces the strong EUF-CMA security to Goppa Code Decoding
Problem, defined as:

Definition 5. (Goppa Code Decoding Problem [17])
Input: An pn ´ kq ˆ n parity check matrix H 1 “ SHQ and a syndrome s P Fn´k2 , where H is an pn ´ kq ˆ n

parity check matrix of a binary Goppa code, S is a nonsingular pn ´ kq ˆ pn ´ kq matrix, and Q is an n ˆ n
permutation matrix
Output: A word e P Fn2 such that wtpeq ď n´k

log n and H 1eT “ s.

However, for any code, including a Goppa code, the decoding problem is more difficult than the distinguishing
problem, as given by the following theorem.

Theorem 6. The Goppa Code Distinguishing Problem is reducible to the Goppa Code Decoding Problem.

Proof. Assume that Adec is an adversary that efficiently solves the Goppa Code Decoding Problem. Adec has
inputs H 1 and s and returns e satisfying wtpeq ď n´k

log n and H 1eT “ s. Now, we can make Adist an adversary
solving Goppa Code Distinguishing Problem using Adec. Adist gives H 1 and s to Adec as inputs. Subsequently, if
wtpAdecpH

1, sqq ď t and H 1eT “ s, Adist returns 1. Else if wtpAdecpH
1, sqq ą t or AdecpH, sq “K or H 1eT ‰ s,

it returns 0.

Although it has been proved that the Goppa Code Distinguishing Problem is not a hard problem for specific
parameters proposed by CFS, i.e., a high-rate Goppa code, the proof in [16] is tighter than it is in [17]. Therefore,
we prove the EUF-CMA security of the modified pqsigRM by modifying the proof in [16].
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Now, we reduce the EUF-CMA security of the modified pqsigRM to the Modified RM Code Distinguishing
Problem and the Bounded Decoding With Hull of Large Dimension, where two definitions are given as:

Definition 7. (Modified RM Code Distinguishing Problem)
Input: An pn´ kq ˆ n parity check matrix H 1

Output: A bit b P t0, 1u where b “ 1 if H 1 “ SHmodQ, where Hmod is the parity check matrix of a modified RM
code, S is an pn´ kq ˆ pn´ kq nonsingular matrix, and Q is an nˆ n permutation matrix, and b “ 0, otherwise.

Definition 8. (Bounded Decoding With Hull of Large Dimension)
Input: An pn´ kq ˆ n parity check matrix H 1 and a syndrome s P Fn´k2 , where the dimension of the hull of the

code corresponding to H 1 is large (approximately ě n
4 )

Output: A word e P Fn2 such that wtpeq ď n´k
2 and HeT “ s.

It is difficult to prove the hardness of the Modified RM Code Distinguishing Problem. In fact, because it is extremely
difficult to prove the hardness of distinguishing a code from a random code, several cryptosystems are designed
assuming that their public codes are difficult to distinguish from random codes. Based on the Hamming weight
distribution of codewords, as described in Section V, we claim that the Modified RM Code Distinguishing Problem
is a hard problem. For successful decoding for any received vector, a pu|u`vq-structured code should be utilized; to
resist the attack on the pu|u`vq-structured code in [13], we design the code with a high hull dimension. Generally,
the dimension of the hull of a random code is very low, but it is shown that there are numerous codes with a certain
dimension of hull in [24]. Therefore, only with the dimension of the hull, it is hard to know whether the code is
random one with high dimensional hull or the public code of the modified pqsigRM.

The Goppa Parameterized Bounded Decoding Problem belongs to the general decoding problem. The general
decoding problem is proved to be NP-hard for t ď n´k

2 in the binary case [18]. The problem in Definition 8 is the
addition of the hull dimension condition to the general decoding problem. In [18], the general decoding problem
is reduced to Three-Dimensional Matching, which is a well-known NP-hard problem. However, dimension of the
hull is not considered in the proof in [18] and it is difficult to determine how the dimension of the hull affects the
problem. We thus assume it to be a hard problem. Furthermore, a definition of pτ, εq-hard is given as follows.

Definition 9. (pτ, εq-hard)
A problem is said to be pτ, εq-hard if for any solver running in time at most τ , its success probability is less than

or equal to ε.

Now, we can modify the theorem in [16] and prove the EUF-CMA security of the modified pqsigRM as follows.

Theorem 10. The modified pqsigRM is pε, τ, qH, qΣq-EUF-CMA secure in the random oracle model under the
assumption that the Modified RM Code Distinguishing Problem and Bounded Decoding With Hull of Large
Dimension are pτdist, εdistq- and pτdecode, εdecodeq-hard, respectively. Here, ε and τ are given as

ε “pqH ` qΣ ` 1qεdecode ` εdist

` 2´ p1´
1

2n´k
qpqH`qΣ`1q ´ p1´

qΣ

2n´k
qqH

and
τ ě τdecode ´ pqH ` qΣ ` 1q ¨ Tspn, kq,

where Tspn, kq is the syndrome computation time for an pn, kq modified RM code.

Proof. The proof is similar to that in [16] and is omitted.

For quantum EUF-CMA security, the security reduction in [15] can be adapted with the same assumptions as
above.

VII. CONCLUSION

We introduced a new signature scheme based on modified RM codes with partial permutation that improves the
CFS signature scheme. For any given syndrome, an error vector with small Hamming weight can be found from
the structure of the partially permuted RM code. The proposed signature scheme resists known attacks against
cryptosystems based on the original RM codes. The partially permuted RM code improves the signature success
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condition in the CFS signature scheme and can greatly shorten the signing time. In addition, errors larger than the
error correction capability can be detected through decoding, and thus the key size can be reduced.

We further modified the RM code with row insertion/deletion, which shows the indistinguishability from random
codes with the same hull dimension while maintaining the decoding of the partially permuted RM code. Based on
this indistinguishability assumption and the hardness of decoding a random code whose hull dimension is large,
we proved the EUF-CMA security of the proposed signature scheme. The challenge of proving that these two
assumptions are true will be addressed in the future.
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