38,041 research outputs found

    Median problems in networks

    Get PDF
    The P-median problem is a classical location model “par excellence”. In this paper we, first examine the early origins of the problem, formulated independently by Louis Hakimi and Charles ReVelle, two of the fathers of the burgeoning multidisciplinary field of research known today as Facility Location Theory and Modelling. We then examine some of the traditional heuristic and exact methods developed to solve the problem. In the third section we analyze the impact of the model in the field. We end the paper by proposing new lines of research related to such a classical problem.P-median, location modelling

    On the Cost of Essentially Fair Clusterings

    Get PDF
    Clustering is a fundamental tool in data mining. It partitions points into groups (clusters) and may be used to make decisions for each point based on its group. However, this process may harm protected (minority) classes if the clustering algorithm does not adequately represent them in desirable clusters -- especially if the data is already biased. At NIPS 2017, Chierichetti et al. proposed a model for fair clustering requiring the representation in each cluster to (approximately) preserve the global fraction of each protected class. Restricting to two protected classes, they developed both a 4-approximation for the fair kk-center problem and a O(t)O(t)-approximation for the fair kk-median problem, where tt is a parameter for the fairness model. For multiple protected classes, the best known result is a 14-approximation for fair kk-center. We extend and improve the known results. Firstly, we give a 5-approximation for the fair kk-center problem with multiple protected classes. Secondly, we propose a relaxed fairness notion under which we can give bicriteria constant-factor approximations for all of the classical clustering objectives kk-center, kk-supplier, kk-median, kk-means and facility location. The latter approximations are achieved by a framework that takes an arbitrary existing unfair (integral) solution and a fair (fractional) LP solution and combines them into an essentially fair clustering with a weakly supervised rounding scheme. In this way, a fair clustering can be established belatedly, in a situation where the centers are already fixed

    Constant-Factor FPT Approximation for Capacitated k-Median

    Get PDF
    Capacitated k-median is one of the few outstanding optimization problems for which the existence of a polynomial time constant factor approximation algorithm remains an open problem. In a series of recent papers algorithms producing solutions violating either the number of facilities or the capacity by a multiplicative factor were obtained. However, to produce solutions without violations appears to be hard and potentially requires different algorithmic techniques. Notably, if parameterized by the number of facilities k, the problem is also W[2] hard, making the existence of an exact FPT algorithm unlikely. In this work we provide an FPT-time constant factor approximation algorithm preserving both cardinality and capacity of the facilities. The algorithm runs in time 2^O(k log k) n^O(1) and achieves an approximation ratio of 7+epsilon

    A joint replenishment competitive location problem

    Get PDF
    Competitive Location Models seek the positions which maximize the market captured by an entrant firm from previously positioned competitors. Nevertheless, strategic location decisions may have a significant impact on inventory and shipment costs in the future affecting the firm’s competitive advantages. In this work we describe a model for the joint replenishment competitive location problem which considers both market capture and replenishment costs in order to choose the firm’s locations. We also present an metaherusitic method to solve it based on the Viswanathan’s (1996) algorithm to solve the Replenishment Problem and an Iterative Local Search Procedure to solve the Location Problem.N/

    Consumer choice in competitive location models: Formulations and heuristics

    Get PDF
    A new direction of research in Competitive Location theory incorporates theories of Consumer Choice Behavior in its models. Following this direction, this paper studies the importance of consumer behavior with respect to distance or transportation costs in the optimality of locations obtained by traditional Competitive Location models. To do this, it considers different ways of defining a key parameter in the basic Maximum Capture model (MAXCAP). This parameter will reflect various ways of taking into account distance based on several Consumer Choice Behavior theories. The optimal locations and the deviation in demand captured when the optimal locations of the other models are used instead of the true ones, are computed for each model. A metaheuristic based on GRASP and Tabu search procedure is presented to solve all the models. Computational experience and an application to 55-node network are also presented.Distance, competitive location models, consumer choice behavior, GRASP, tabu
    • …
    corecore