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RESUMO/ABSTRACT 
 

A Joint Replenishment Competitive Location Problem 
 
 

Competitive Location Models seek the positions which maximize the market 
captured by an entrant firm from previously positioned competitors. 
Nevertheless, strategic location decisions may have a significant impact on 
inventory and shipment costs in the future affecting the firm’s competitive 
advantages. In this work we describe a model for the joint replenishment 
competitive location problem which considers both market capture and 
replenishment costs in order to choose the firm’s locations. We also present an 
metaherusitic method to solve it based on the Viswanathan’s (1996) algorithm 
to solve the Replenishment Problem and an Iterative Local Search Procedure to 
solve the Location Problem.            
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Abstract  

 
 

Competitive Location Models seek the positions which maximize the market captured by an 

entrant firm from previously positioned competitors. Nevertheless, strategic location decisions 

may have a significant impact on inventory and shipment costs in the future affecting the firm’s 

competitive advantages. In this work we describe a model for the joint replenishment 

competitive location problem which considers both market capture and replenishment costs in 

order to choose the firm’s locations. We also present an metaherusitic method to solve it based 

on the Viswanathan’s (1996) algorithm to solve the Replenishment Problem and  an Iterative 

Local Search Procedure to solve the Location Problem.            
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1. Introduction. 

Competitive location models consider explicitly the fact that when an entrant facility is going to 

choose its location there are already other facilities in the market and that the entrant facility 

will have to compete with them for its market share. Customers will patronize the most 

attracting facility, and distance between the facility and the customer often plays an important 

role in this attraction. (see Plastria, 2001).  

ReVelle’s Maximum Capture Problem (1986) initiated a series of studies on the location of 

retail facilities in discrete space (see Serra and ReVelle, 1995). The MAXCAP model makes the 

following assumptions: (1) the product sold is homogeneous, (2) the consumer’s decision on 

patronizing the store is based on distance and (3) unit costs are the same in all stores regardless 

of ownership. Examples of services that best fit on these three assumptions can be found mainly 

in the fast food sector, in convenience stores and in the banking sector.   

When locating retail facilities a major topic of concern besides market share is the inventory 

decision that will be associated to each location scenario, given the fact that inventory 

replenishment costs are an important component on retail stores total costs. Some firms may be 

willing to sacrifice some market share in order to have a more convenient location for their 

inventory replenishment. 

In this paper we formulate a model which considers both location and inventory decisions for an 

entrant firm. When entering in the market the new firm will decide the location of the facilities, 

the market to capture and the replenishment policy, including the replenishment frequency,    

In chapter 1 we will revise some literature on competitive spatial modeling. In chapter 2 we 

describe a model, which incorporates explicitly waiting time, and in chapter 3 we propose a 

metaheuristic to solve the model. Some results of our computational experiments are described 

in chapters 4 and 5. 

2. Literature Review. 



The MaxCap (maximum capture) model introduced by ReVelle (1986) finds the optimal 

location on a network considering that each demand point will patronize the closest facility. 

Several authors have expanded ReVelle’s formulation: Eiselt and Laporte (1989) generalize 

ReVelle’s findings in two directions: they allow differential weights for the facilities and they 

leave a parameter of the cost function variable so as to facilitate sensitivity analysis, Serra and 

ReVelle (1993) introduce in the model facilities that are hierarchical in nature and where there 

is competition at each level of the hierarchy, the same authors, Serra and ReVelle (1994), 

account the possible reaction from competitors to the entering firm in the preemptive location 

problem, on which the leader wishes to preempt the entering firm in its bid to capture market 

share to the maximum extend possible. Serra, Ratick and ReVelle (1996) offer a modification of 

the MaxCap problem on which they consider that a firm wants to locate a fixed number of 

servers so as to maximize market capture in a region where competitors are already located but 

where there is uncertainty. The authors consider different future scenarios with respect to 

demand and/or the location of competitors.  

Most competitive location problems were at first developed under the hypothesis that different 

firms provide the same indistinguishable product and that all customers have the same 

preferences, i.e., the same deterministic utility function. Some literature refers to the topic of 

dropping the hypothesis of the homogeneity of the product. 

In Drezner (1994) customers base facility choice on a utility function that incorporates a 

facility’s attributes and the distance to the facility. Although customers are no longer assumed to 

patronize the closest facility, customers at a certain demand point apply the same utility 

function. 

Drezner and Drezner (1996) assume the utility function to change from one consumer to another 

for customers located at the same demand point. Using this assumption the “all or nothing” 

property disappears. 

Serra, Eiselt, Laporte and ReVelle (1999) developed two models allowing different customer 

choice rules. One model assumes that customers consider the closest facility of each firm and 



then patronize the two facilities in proportion to the customer-facility distance. The other model 

assumes that the demand captured by a facility is affected by the existence and location of all 

facilities of both firms. 

Other improvements over the initial maximum capture model refer to minimum market shares 

that firms need to capture in order to survive. Carreras and Serra (1998) present a model that 

locates the maximum number of services that can coexist in a given region without having 

losses, taking into account that they need a minimum demand level in order to survive. 

Serra, ReVelle and Rosing (1999) considered the problem of locating several facilities such that 

each facility attracts a minimum threshold of customers. Drezner and Eiselt (2002) consider a 

minimum market share threshold to be captured, below which the firm cannot survive and 

propose the objective of minimizing the probability that revenues fall short of the threshold 

necessary for survival. 

3. The model for the Joint Replensishment Competitive Location Problem. 

Competitive Location Problems seek the location of a fixed number of stores belonging to a 

firm in a spatial market where there are other stores from other firms already competing for 

clients. The objective of the entering firm is to maximize its profits. Whenever the prices 

charged at the different facilities are equal and there are no location-specific costs, the profit-

maximizing objective reduces to maximization of sales (market capture). 

A customer is an individual or a group of such with a unique and identifiable location and 

behavior. Since a customer has a location and issues demand, the term demand point is also 

used. The expression “point demand” as defined by Plastria (2001) refers to discrete demand 

concentrated in a finite set of points. 

We consider a discrete location space in the sense that there is only a finite list of candidate sites 

and the market is characterized by point demand. 

Each customer feels some attraction towards each of the competing facilities, that’s what is 

usually referred as “patronizing behavior”. The “attraction function” describes how a customer’s 



attraction, also called utility, towards a facility is obtained. In our model the attraction function 

is determined by distance to the store location. 

Let us assume an entering firm (firm A) that wants to locate p new outlets when there are q 

other outlets from another firm (firm B) already competing at the market place.  

 

 

 

 

  

In order to solve the problem we consider that the entering firm wants to maximize its market 

share, and that each demand point will patronize the store and the closest location. This problem 

can be written as  

Where, 

Xij
   =1 if demand point i patronizes a store at j 

=0 otherwise 

i,I index and set of demand points 

j,J index and set of potential locations 

JA set of firm’s A (entrant firm) store locations 

ai demand at node i 

dij is the distance from node i to node j 
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Constraints (2) limit the allocation of one demand point to only one store. Constraints (3) state 

that a demand point will always patronize the closest outlet location. Originally introduced by 

Rojeski and ReVelle (1970) this constrains establish that if j is an open outlet and no closer 

outlet is open, then demand i must be assigned to j. If j is open but a closer outlet is also open, 

then this relation does not constrain assignment in any way. Constraint (4) fixes the number of 

outlet to locate to be p. Constraints (5) are the binary constraints. 

We also consider the replenishment policy as an important factor conditioning the location of 

the outlets. Replenishment decisions will result from a Joint Replenishment Problem- JRP. The 

JRP applies to a variety of situations. Nilsson et al. (2005), expose real life situations of 

different nature where different articles are ordered by a single client to a supplier; where 

several products share the same transportation or when an item is produced to be packaged in 

different packages. In our case we consider a same product sharing the same transportation to 

a set of stores where the product is sold to the customer. 

The main objective of the problem of joint replenishment will consists on finding a situation of 

balance between the fixed costs of ordering and the holding costs for the different stores 

locations through the adjustment of the frequencies of replenishment (kj) at each location.   

The problem will involve the calculation of the base time period (T) that corresponds to the 

policy of cycle of joint replenishment and its multiple positive integers (kj´s) for the frequency 

of replenishment of each item. The objective is going to find the values of T and of the kj´s that 

drive the relevant total costs for period of time (Ctr) to its minimum value. For the JRP we need 

the following additional notation: 

 n – Number of stores in joint replenishment 

A – Fixed cost of ordering by joined, independently of the number of stores (major set-up 

cost).   

cj -  Variable Cost of including store j in the joint order, with j = 1, 2,...  , n. 



hj – Holding Cost (maintenance) of a unit of the item in warehouse at store location j by unit of 

time.   

aj – Demand for the item at store location j by unit of time, constant and known.  

T – Joint replenishment cycle time, i.e., period of time that elapses between each revision of 

the stocks (Basic Cycle Time).   

tj - Period of time that elapses between each replenishment at store location j, with j = 1, 2,..., 

n.  

V – Mean number of joint replenishment orders by unit of time. 

vi – Mean number of replenishment orders for item at store location j by unit of time (vj = 1/tj), 

with j = 1, 2,...  , n.   

kj – Frequency of replenishment at store location j, assuming discrete values which are 

multiple of T. 

Ctr – relevant average total costs of the joint replenishment system by unit of time.   

In the literature, as is an example Silver (1976), Silver et al (1998), Andres et al.  (1975) and 

Goyal et al (1989), it is usual to find the same group of assumptions for the JRP with 

continuous revision and deterministic demand: the demand is known and constant; the stock 

replenishment admits non integer quantities of the items; the costs of output and/or the 

prices of acquisition do not depend on the quantities ordered; the stock replenishment is 

immediate, assuming an infinite quantity available of each item; stock shortage is not 

admitted; the waiting time of supply is zero; there is no limitation for the space of storage; the 

operation of the system of storage admits an infinite time horizon; the joint replenishment of 

the orders, requires that, at least, one of the items to be always ordered, i.e., to have T as 

periodicity of order (restricted cycle policy). 

The relevant costs associated to the problem of joint replenishment of stocks in accordance 

with the model assumptions are classified as ordering costs and holding costs. The ordering 

costs are subdivided into a fixed component A (major set-up cost), that is incurred whenever 



an order occurs, independently of the number of stores in replenishment, and in a variable 

costs component (ci), that is related with each store integrated in the order (minor set-up 

cost).   

The holding costs by unit of time hj, result from the maintenance of each unit of the item in 

the warehouse at store location j, while waiting for its commercialization. 

Grouping all items object of a joint replenishment we will be able to identify the equation of 

the medium relevant total costs by unit of time (see as an example Viswanathan, 1996):   
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The final model we want to solve is now given by the following 
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This is a bi-objective model where we want to find the set of firm A’s outlet locations that 

maximize the market captured and minimize replenishment costs. In practice both objectives 

will hardly be optimized at the same time and we will have a tradeoff curve between the two 

objectives. 

Kariv and Hakimi (1979) prove that the p-Median problem is a NP-Hard problem on a general 

graph. Besides that, notice that the objective Z2 is non-linear and that we need to solve a p-

median model for each firm A stores’ possible locations. This explains the important role played 

by the metaheuristics in solving the model.  

4. A Metaheuristic Solution Procedure 

In the heuristic we used a Iterated Local Search Procedure (ILS). The algorithm comprises the 

following steps: construction of an initial solution, perturbation in the locations and perturbation 

in the weights. Figure 1 gives us the pseudo-code of the algorithm.  

In order to implement first step it was necessary to define an evaluation function to construct the 

restricted candidate list - RCL. We chose the following one: 

( ) ( ) ( )jFwjFwjF 2211 −=    (7) 

where, 

( ) jajF =1      (8) 

( ) ( )
2

. 1
2

jFh
CjF j

j +=    (9) 

The Restricted Candidate List (RCL) will then contain all the candidate solutions within a given 

distance of the top candidate as a function of ϕ. The threshold value can be expressed as: 

      0       1max ≤≤ γγϕ  

Where maxϕ  is the maximum value of the function, and γ  is a parameter defining which 

candidate nodes will be included in the RCL (e.g. with γ =0.7 we include in the RCL all the 

candidate nodes with a value for the greedy function higher than 70% of the maximum). 



In the function the value assigned to each of the candidate locations is obtained by the 

population that would be allocated to a firm A store at this location. To obtain the initial 

solution we follow the steps: 

1) Choose randomly p locations from the RCL. 

2) Allocate the demand nodes to their closest facility location. 

3)  Compute location costs’ objective considering the allocations obtained in 1).  

4) Use Viswanathan (1996)’s algorithm in order to find the optimal joint replenishment policy 

and compute the replenishment costs objective. In this step we will obtain not only the value of 

the joint replenishment objective but also the optimal values for the frequencies k and the cycle 

time T. 

5) Compute objective. In this step we use the following function: 
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The pseudo-code for the initial solution procedure is given in figure 3. 

Over the initial solution we make a local improvement. For each Distribution Center at a time 

we de-allocate the demands that were allocated to it and move it to all possible unused potential 

locations, repeating the following steps:  

1) Always allocate a demand point to the closest potential facility location.  

2) Compute location costs’ objective. 

3) Use Viswanathan (1996)’s algorithm in order to find the optimal joint replenishment policy 

and compute the replenishment costs objective.   

4) Compute objective F(X) using expressions (10) to (12). If the objective improves keep the 

new location for the Distribution Center and the new allocations, otherwise keep the old 

locations and allocations. 



The pseudo-code for the local improvement procedure is given in figure 4. 

Following the algorithm we implement first a perturbation with fixed weights and then a 

perturbation in the weights. The first type of perturbations consists in the following:  

1) Close a random number of outlets (between 2% and 30% of the total number of outlets to 

locate).  

2) Measure the contribution to total objective of each of the individual locations in the final 

solution using expressions (7), (8) and (9). 

3) Close the facilities with the worse values of ( )XF j  

4) Open the same number facilities as closed in 1). 

4.1) For each potential facility location compute( )jF  using expression (7) to (9). 

4.2) Open facilities in the locations with probability Pj, where 

( ) ( )
( ) ( )∑ −

−
=

j

j jFwjFw

jFwjFw
P

2211

2211  

4.3) Proceed to a local improvement procedure as in figure 4. 

4.4) Update the non-dominated set. 

The second type of perturbations consists in changing the weights given to both objectives, 

proceed to a local search and update the non-dominated set. 

 Finally, we proceed to a search in the PE: For each solution in set S at a time check if this 

solution is not dominated by any other solution in that set. Case it is a non-dominated solution 

keep the solution in set S, otherwise delete the solution from set S. Return S as the solution set 

for the problem. 

5. Numerical Examples 

In the numerical examples we started working with Swain’s (1974) well-known 55-node 

network. We assume that firm B already has five stores operating in the nodes with the largest 

population and we want to locate five firms’ A stores.  

There is a total of 26 235 possible combinations for the locations of the three stores in the 55 

node network of Swain (1974). Suppose that a competitor firm is already operating in the five 



nodes with the largest populations, Table 1 shows the results of the regression of market capture 

in replenishment costs.  As expected we found a positive relationship between market capture 

and replenishment costs: the larger the market captured by the firm the larger will be the cost 

with replenishment of the outlets. 

For all possible combinations of outlets it was possible to select only 18 non-dominated 

solutions (with no other solution with a lower replenishment cost and simultaneously a higher 

market capture). The results are described on table 2 and illustrated by figure 5. It is clear from 

figure 5 the tradeoff between larger market captures and lower replenishment costs. 

 
 
 
 
 
 
 

6. Conclusions  

In this work we describe a new problem: the Joint Replenishment Competitive Location 

problem and present a mathematical model and metaheuritics to solve it. Also, we present the 

results of a computational experiment that reveals important insights on this problem. 

We introduced Viswanathan (1996) in an iterated local search procedure in order to find the 

non-dominated solutions of the problem of maximizing market capture and simultaneously 

minimizing replenishment costs.  From the numerical experiments we conclude about the 

tradeoff among both objectives, which is in consistency with the theoretical model.  

  



 

 

 
 
 

Figure 1: ILS pseudo-code  
 
 
 
 
 
 
 
 
 
 
 
 

( )

{ }
{ }

( )
{ }

( )
( )

{ }

{ }

( )
( )

{ }

( )
( )

{ }

   end ILS  

NDS(PE);DSN   

 setdominated-nom Define      

enddo   

        enddo   

S,PE);update_PE(EP          

;S,Wch local_SearS           

;Won  perturbatiW            

t:improvemens without  iterationtil q     do un

htson in weigPerturbati      

        enddo

S,PE);update_PE( PE           

;S,Wrch  local_sea    S           

;S,Won perturbati    S          

t:     improvemens without  iterationntil q      do u

hocal SearcIterated L       

S;     PE

EInitiate P             

;S,Wrch  local_Sea       S

;Seed,γolution  initial_S       S

solutionn initial Generate a             

;Seederator random_gen       W

eightsInitiate w             

lutionInitial SoConstruct         

oerations d to Max_itFor k       

ions, SeedMax_iteratILS procedure 

 

 

 

 

 

 

18

17

16

15

14

13

12

211

10

9

8

7

16

5

4

3

2

1 1

←

←
←

←

←
←
←

←

←
←

←

=



 
 
 
 
 
 
 
 
 

( )

( )

( )

;_

;**

);(

;0:

,_

10

2219

8

7

6

4

3

2

1

objectiveevaluate end  

FWFW :obj 

SnViswanathaF 

enddo 

ipopFF            

j to allocated is iif          

do I  i all For       

do J j  all For 

F  

location; center closest its to point demand each Allocate  

WS objectiveevaluate procedure

1 

2 

 

11 

5

A
 

1

−=
←

+=

∈
∈

=

 

 
 
 

Figure 2: Objective evaluation pseudo-code  
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Figure 3: Initial Solution pseudo-code  
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Figure 4: Local Search Phase pseudo-code 
  



 
Regression Statistics     

R square 0,435732979     
Standard Error 55,98752822     
Number of cases 26235     
      
ANOVA      

  df SS MS F F significance 
Regressão 1 63498915,89 63498916 20257,4 0 
Residual 26233 82230048,81 3134,603   
Total 26234 145728964,7       
      

  Coefficients 
Standard 

Error  t P value  
Interceptar 129,2667759 1,312420964 98,4949 0  
Variável X 1 0,11507904 0,000808545 142,3285 0  

 
 
 

 
Table 1: regression of market capture in replenishment cost 

 
  



 
 

 
 

Iteration 
Market 
capture 

Replenishment 
cost Locations:   

7881 2870 349,324 7 9 32 

7926 2520 250,855 7 10 32 

8321 2320 247,783 7 20 32 

10366 2670 300,019 9 18 32 

10756 2960 390,064 9 31 32 

10769 3010 471,815 9 31 45 

11356 2320 184,134 10 18 32 

11378 1820 133,508 10 18 54 

11557 1840 169,553 10 24 32 

11579 1340 119,593 10 24 54 

11779 2000 174,175 10 32 42 

11966 1500 121,659 10 42 54 

11989 1270 101,774 10 44 54 

12008 1230 94,2301 10 46 54 

12033 730 68,1985 10 50 53 

12034 1180 83,8006 10 50 54 

18828 2540 295,264 19 32 41 

23944 2740 343,385 31 32 41 

 
Table 2: non-dominated solutions 

  



 
 

 
Figure 5: Non-dominated solutions 
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