474 research outputs found

    Survivability in Time-varying Networks

    Get PDF
    Time-varying graphs are a useful model for networks with dynamic connectivity such as vehicular networks, yet, despite their great modeling power, many important features of time-varying graphs are still poorly understood. In this paper, we study the survivability properties of time-varying networks against unpredictable interruptions. We first show that the traditional definition of survivability is not effective in time-varying networks, and propose a new survivability framework. To evaluate the survivability of time-varying networks under the new framework, we propose two metrics that are analogous to MaxFlow and MinCut in static networks. We show that some fundamental survivability-related results such as Menger's Theorem only conditionally hold in time-varying networks. Then we analyze the complexity of computing the proposed metrics and develop several approximation algorithms. Finally, we conduct trace-driven simulations to demonstrate the application of our survivability framework to the robust design of a real-world bus communication network

    Resource Allocation in Communication and Social Networks

    Get PDF
    abstract: As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network environment. This dissertation focuses on two different kinds of networks - communication and social, and studies resource allocation problems in these networks. The study on communication networks is further divided into different networking technologies - wired and wireless, optical and mobile, airborne and terrestrial. Since nodes in an airborne network (AN) are heterogeneous and mobile, the design of a reliable and robust AN is highly complex. The dissertation studies connectivity and fault-tolerance issues in ANs and proposes algorithms to compute the critical transmission range in fault free, faulty and delay tolerant scenarios. Just as in the case of ANs, power optimization and fault tolerance are important issues in wireless sensor networks (WSN). In a WSN, a tree structure is often used to deliver sensor data to a sink node. In a tree, failure of a node may disconnect the tree. The dissertation investigates the problem of enhancing the fault tolerance capability of data gathering trees in WSN. The advent of OFDM technology provides an opportunity for efficient resource utilization in optical networks and also introduces a set of novel problems, such as routing and spectrum allocation (RSA) problem. This dissertation proves that RSA problem is NP-complete even when the network topology is a chain, and proposes approximation algorithms. In the domain of social networks, the focus of this dissertation is study of influence propagation in presence of active adversaries. In a social network multiple vendors may attempt to influence the nodes in a competitive fashion. This dissertation investigates the scenario where the first vendor has already chosen a set of nodes and the second vendor, with the knowledge of the choice of the first, attempts to identify a smallest set of nodes so that after the influence propagation, the second vendor's market share is larger than the first.Dissertation/ThesisPh.D. Computer Science 201

    Offloading Content with Self-organizing Mobile Fogs

    Get PDF
    Mobile users in an urban environment access content on the internet from different locations. It is challenging for the current service providers to cope with the increasing content demand from a large number of collocated mobile users. In-network caching to offload content at nodes closer to users alleviate the issue, though efficient cache management is required to find out who should cache what, when and where in an urban environment, given nodes limited computing, communication and caching resources. To address this, we first define a novel relation between content popularity and availability in the network and investigate a node's eligibility to cache content based on its urban reachability. We then allow nodes to self-organize into mobile fogs to increase the distributed cache and maximize content availability in a cost-effective manner. However, to cater rational nodes, we propose a coalition game for the nodes to offer a maximum "virtual cache" assuming a monetary reward is paid to them by the service/content provider. Nodes are allowed to merge into different spatio-temporal coalitions in order to increase the distributed cache size at the network edge. Results obtained through simulations using realistic urban mobility trace validate the performance of our caching system showing a ratio of 60-85% of cache hits compared to the 30-40% obtained by the existing schemes and 10% in case of no coalition

    Social delay tolerant approach for safety services in vehicular networks

    Get PDF
    Vehicular networks have attracted attention for recent years due to their various and emerging applications supporting secure and convenient driving. Regarding specific features of vehicular networks, we propose a new Social-aware Vehicular DTN protocol (SocVe) respectively for a type of safety applications such as emergency support services. We evaluate our protocol in short contact and intermittent connection scenarios extracting from mobility data set in Hanoi city. We conduct comparative performance evaluation of SocVe in multiple scenarios with different destination centralities against a geographical protocol

    SOCIAL AND LOCATION BASED ROUTING IN DELAY TOLERANT NETWORKS

    Get PDF
    Delay tolerant networks (DTNs) are a special type of wireless mobile networks which may lack continuous network connectivity. Routing in DTNs is very challenging as it must handle network partitions, long delays, and dynamic topology in such networks. Recently, the consideration of social characteristics of mobile nodes provides a new angle of view in the design of DTNs routing protocols. In many DTNs, a multitude of mobile devices are used and carried by people (e.g. pocket switched networks and vehicular networks), whose behaviors are better described by social models. This opens the new possibilities of social-based routing, in which the knowledge of social characteristics is used for making better forwarding decision. However, the social relations do not necessarily reflect the true device communication opportunities in a dynamic DTN. On the other hand, the increasing availability of location technologies (GPS, GSM networks, etc.) enables mobile devices to obtain their locations easily. Consider that an individual’s location history in the real world implies his/her social interests and behaviors to some extent, in this dissertation, we study new social based DTN routing protocols, which utilize location and/or social features to achieve efficient and stable routing for delay tolerant networks. We first incorporate the location features into the social-based DTN routing methods to improve their performance by treating location similarity among nodes as possible social relationship. Then, we dis- cuss the possibility and methods to further improve routing performance by adding limited amount of throw-boxes into the networks to aid the DTN relay. Several throw-boxes based routing protocols and location selection methods for throw-boxes are proposed. All pro- posed routing methods are evaluated via extensive simulations with real life trace data (such as MIT reality, Nokia MDC, and Orange D4D)
    • …
    corecore