46,273 research outputs found

    Robust point correspondence applied to two and three-dimensional image registration

    Get PDF
    Accurate and robust correspondence calculations are very important in many medical and biological applications. Often, the correspondence calculation forms part of a rigid registration algorithm, but accurate correspondences are especially important for elastic registration algorithms and for quantifying changes over time. In this paper, a new correspondence calculation algorithm, CSM (correspondence by sensitivity to movement), is described. A robust corresponding point is calculated by determining the sensitivity of a correspondence to movement of the point being matched. If the correspondence is reliable, a perturbation in the position of this point should not result in a large movement of the correspondence. A measure of reliability is also calculated. This correspondence calculation method is independent of the registration transformation and has been incorporated into both a 2D elastic registration algorithm for warping serial sections and a 3D rigid registration algorithm for registering pre and postoperative facial range scans. These applications use different methods for calculating the registration transformation and accurate rigid and elastic alignment of images has been achieved with the CSM method. It is expected that this method will be applicable to many different applications and that good results would be achieved if it were to be inserted into other methods for calculating a registration transformation from correspondence

    Modeling and Analysis of Manufacturing Systems with Multiple-Loop Structures

    Get PDF
    Kanban and Constant Work-In-Process (CONWIP) control methods are designed to impose tight controls over inventory, while providing a satisfactory production rate. This paper generalizes systems with kanban or CONWIP control as assembly/disassembly networks with multiple-loop structures. We present a stochastic mathematical model which integrates the information control flows into material flows. Graph theory is used to analyze the multiple-loop structures. An efficient analytical algorithm is developed for evaluating the expected production rate and inventory levels. The performance of the algorithm is reported in terms of accuracy, reliability and speed.Singapore-MIT Alliance (SMA

    Thermodynamics of Error Correction

    Get PDF
    Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and {\cred work dissipated by the system during wrong incorporations}. Its derivation is based on the second law of thermodynamics, hence its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.Comment: 9 pages, 5 figure

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Experiment-friendly kinetic analysis of single molecule data in and out of equilibrium

    Full text link
    We present a simple and robust technique to extract kinetic rate models and thermodynamic quantities from single molecule time traces. SMACKS (Single Molecule Analysis of Complex Kinetic Sequences) is a maximum likelihood approach that works equally well for long trajectories as for a set of short ones. It resolves all statistically relevant rates and also their uncertainties. This is achieved by optimizing one global kinetic model based on the complete dataset, while allowing for experimental variations between individual trajectories. In particular, neither a priori models nor equilibrium have to be assumed. The power of SMACKS is demonstrated on the kinetics of the multi-domain protein Hsp90 measured by smFRET (single molecule F\"orster resonance energy transfer). Experiments in and out of equilibrium are analyzed and compared to simulations, shedding new light on the role of Hsp90's ATPase function. SMACKS pushes the boundaries of single molecule kinetics far beyond current methods.Comment: 11 pages, 8 figure
    corecore