79,464 research outputs found

    On the Number of Zeros of Abelian Integrals: A Constructive Solution of the Infinitesimal Hilbert Sixteenth Problem

    Full text link
    We prove that the number of limit cycles generated by a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing tangential Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection (Gauss-Manin connection) with a quasiunipotent monodromy group.Comment: Final revisio

    Polynomial Bounds for Oscillation of Solutions of Fuchsian Systems

    Get PDF
    We study the problem of placing effective upper bounds for the number of zeros of solutions of Fuchsian systems on the Riemann sphere. The principal result is an explicit (non-uniform) upper bound, polynomially growing on the frontier of the class of Fuchsian systems of given dimension n having m singular points. As a function of n,m, this bound turns out to be double exponential in the precise sense explained in the paper. As a corollary, we obtain a solution of the so called restricted infinitesimal Hilbert 16th problem, an explicit upper bound for the number of isolated zeros of Abelian integrals which is polynomially growing as the Hamiltonian tends to the degeneracy locus. This improves the exponential bounds recently established by A. Glutsyuk and Yu. Ilyashenko.Comment: Will appear in Annales de l'institut Fourier vol. 60 (2010

    Uniform stabilization for linear systems with persistency of excitation. The neutrally stable and the double integrator cases

    Get PDF
    Consider the controlled system dx/dt=Ax+α(t)Budx/dt = Ax + \alpha(t)Bu where the pair (A,B)(A,B) is stabilizable and α(t)\alpha(t) takes values in [0,1][0,1] and is persistently exciting, i.e., there exist two positive constants μ,T\mu,T such that, for every t0t\geq 0, tt+Tα(s)dsμ\int_t^{t+T}\alpha(s)ds\geq \mu. In particular, when α(t)\alpha(t) becomes zero the system dynamics switches to an uncontrollable system. In this paper, we address the following question: is it possible to find a linear time-invariant state-feedback u=Kxu=Kx, with KK only depending on (A,B)(A,B) and possibly on μ,T\mu,T, which globally asymptotically stabilizes the system? We give a positive answer to this question for two cases: when AA is neutrally stable and when the system is the double integrator
    corecore