We study the problem of placing effective upper bounds for the number of
zeros of solutions of Fuchsian systems on the Riemann sphere. The principal
result is an explicit (non-uniform) upper bound, polynomially growing on the
frontier of the class of Fuchsian systems of given dimension n having m
singular points. As a function of n,m, this bound turns out to be double
exponential in the precise sense explained in the paper. As a corollary, we
obtain a solution of the so called restricted infinitesimal Hilbert 16th
problem, an explicit upper bound for the number of isolated zeros of Abelian
integrals which is polynomially growing as the Hamiltonian tends to the
degeneracy locus. This improves the exponential bounds recently established by
A. Glutsyuk and Yu. Ilyashenko.Comment: Will appear in Annales de l'institut Fourier vol. 60 (2010