40 research outputs found

    Fuzzy Interpolation Systems and Applications

    Get PDF
    Fuzzy inference systems provide a simple yet effective solution to complex non-linear problems, which have been applied to numerous real-world applications with great success. However, conventional fuzzy inference systems may suffer from either too sparse, too complex or imbalanced rule bases, given that the data may be unevenly distributed in the problem space regardless of its volume. Fuzzy interpolation addresses this. It enables fuzzy inferences with sparse rule bases when the sparse rule base does not cover a given input, and it simplifies very dense rule bases by approximating certain rules with their neighbouring ones. This chapter systematically reviews different types of fuzzy interpolation approaches and their variations, in terms of both the interpolation mechanism (inference engine) and sparse rule base generation. Representative applications of fuzzy interpolation in the field of control are also revisited in this chapter, which not only validate fuzzy interpolation approaches but also demonstrate its efficacy and potential for wider applications

    Adaptive Activation Function Generation Through Fuzzy Inference for Grooming Text Categorisation

    Get PDF
    The activation function is introduced to determine the output of neural networks by mapping the resulting values of neurons into a specific range. The activation functions often suffer from ‘gradient vanishing’, ‘non zero-centred function outputs’, ‘exploding gradients’, and ‘dead neurons’, which may lead to deterioration in the classification performance. This paper proposes an activation function generation approach using the Takagi-Sugeno-Kang inference in an effort to address such challenges. In addition, the proposed method further optimises the coefficients in the activation function using the genetic algorithm such that the activation function can adapt to different applications. This approach has been applied to a digital forensics application of online grooming detection. The evaluations confirm the superiority of the proposed activation function for online grooming detection using an imbalanced data set

    Intrusion Detection System by Fuzzy Interpolation

    Get PDF
    Network intrusion detection systems identify malicious connections and thus help protect networks from attacks. Various data-driven approaches have been used in the development of network intrusion detection systems, which usually lead to either very complex systems or poor generalization ability due to the complexity of this challenge. This paper proposes a data-driven network intrusion detection system using fuzzy interpolation in an effort to address the aforementioned limitations. In particular, the developed system equipped with a sparse rule base not only guarantees the online performance of intrusion detection, but also allows the generation of security alerts from situations which are not directly covered by the existing knowledge base. The proposed system has been applied to a well-known data set for system validation and evaluation with competitive results generated

    Dynamic QoS Solution for Enterprise Networks Using TSK Fuzzy Interpolation

    Get PDF
    The Quality of Services (QoS) is the measure of data transmission quality and service availability of a network, aiming to maintain the data, especially delay-sensitive data such as VoIP, to be transmitted over the network with the required quality. Major network device manufacturers have each developed their own smart dynamic QoS solutions, such as AutoQoS supported by Cisco, CoS (Class of Service) by Netgear devices, and QoS Maps on SROS (Secure Router Operating System) provided by HP, to maintain the service level of network traffic. Such smart QoS solutions usually only work for manufacture qualified devices and otherwise only a pre-defined static policy mapping can be applied. This paper presents a dynamic QoS solution based on the differentiated services (DiffServ) approach for enterprise networks, which is able to modify the priority level of a packet in real time by adjusting the value of Differentiated Services Code Point (DSCP) in Internet Protocol (IP) header of network packets. This is implemented by a 0-order TSK fuzzy model with a sparse rule base which is developed by considering the current network delay, application desired priority level and user current priority group. DSCP values are dynamically generated by the TSK fuzzy model and updated in real time. The proposed system has been evaluated in a real network environment with promising results generated

    Grooming Detection using Fuzzy-Rough Feature Selection and Text Classification

    Get PDF
    Online child grooming detection has recently attracted intensive research interests from both the machine learning community and digital forensics community due to its great social impact. The existing data-driven approaches usually face the challenges of lack of training data and the uncertainty of classes in terms of the classification or decision boundary. This paper proposes a grooming detection approach in an effort to address such uncertainty based on a data set derived from a publicly available profiling data set. In particular, the approach firstly applies the conventional text feature extraction approach in identifying the most significant words in the data set. This is followed by the application of a fuzzy-rough feature selection approach in reducing the high dimensions of the selected words for fast processing, which at the same time addressing the uncertainty of class boundaries. The experimental results demonstrate the efficiency and efficacy

    Interval Type-2 TSK+ Fuzzy Inference System

    Get PDF
    Type-2 fuzzy sets and systems can better handle uncertainties compared to its type-1 counterpart, and the widely applied Mamdani and TSK fuzzy inference approaches have been both extended to support interval type-2 fuzzy sets. Fuzzy interpolation enhances the conventional Mamdani and TKS fuzzy inference systems, which not only enables inferences when inputs are not covered by an incomplete or sparse rule base but also helps in system simplification for very complex problems. This paper extends the recently proposed fuzzy interpolation approach TSK+ to allow the utilization of interval type-2 TSK fuzzy rule bases. One illustrative case based on an example problem from the literature demonstrates the working of the proposed system, and the application on the cart centering problem reveals the power of the proposed system. The experimental investigation confirmed that the proposed approach is able to perform fuzzy inferences using either dense or sparse interval type-2 TSK rule bases with promising results generated

    TSK Inference with Sparse Rule Bases

    Get PDF
    The Mamdani and TSK fuzzy models are fuzzy inference engines which have been most widely applied in real-world problems. Compared to the Mamdani approach, the TSK approach is more convenient when the crisp outputs are required. Common to both approaches, when a given observation does not overlap with any rule antecedent in the rule base (which usually termed as a sparse rule base), no rule can be fired, and thus no result can be generated. Fuzzy rule interpolation was proposed to address such issue. Although a number of important fuzzy rule interpolation approaches have been proposed in the literature, all of them were developed for Mamdani inference approach, which leads to the fuzzy outputs. This paper extends the traditional TSK fuzzy inference approach to allow inferences on sparse TSK fuzzy rule bases with crisp outputs directly generated. This extension firstly calculates the similarity degrees between a given observation and every individual rule in the rule base, such that the similarity degrees between the observation and all rule antecedents are greater than 0 even when they do not overlap. Then the TSK fuzzy model is extended using the generated matching degrees to derive crisp inference results. The experimentation shows the promising of the approach in enhancing the TSK inference engine when the knowledge represented in the rule base is not complete
    corecore