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Abstract. Fuzzy inference systems provide a simple yet powerful solution to
complex non-linear problems, which have been widely and successfully applied
in the control field. The TSK-based fuzzy inference approaches, such as the con-
vention TSK, interval type 2 (IT2) TSK and their extensions TSK+ and IT2 TSK+
approaches, are more convenient to be employed in the control field, as they di-
rectly produce crisp outputs. This paper systematically reviews those four TSK-
based inference approaches, and evaluates them empirically by applying them to
a well-known cart centering control problem. The experimental results confirm
the power of TSK+ and IT2 TSK+ approaches in enhancing the inference using
either dense or sparse rule bases.
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1 Introduction

Fuzzy inference is a mechanism that uses fuzzy logic and fuzzy set theory to map in-
put domains to output domains. A typical fuzzy inference system consists of two main
parts, a rule base and an inference engine. Several inference engines have been devel-
oped, with the Mamdani inference [1] and the TSK inference [2] being most widely ap-
plied. Compared with the Mamdani inference approach, which takes human linguistic
variables as inputs to produce fuzzy outputs and thus requires a defuzzification process
to convert the fuzzy outputs to crisp values, the TSK inference approach uses polyno-
mials as the rule consequences to directly generate crisp outputs. For better uncertainty
management and performance, these fuzzy inference approaches have been extended to
support interval type-2 (IT2) fuzzy sets. Generally speaking, an IT2 fuzzy set represents
the membership of a given member as a crisp interval in the range of r0, 1s [3]. Nev-
ertheless, a complete knowledge base (also termed as a dense rule base), which covers
the entire input domains, is always required by both conventional type-1 and IT2 fuzzy
inference approaches; otherwise, no rule can be fired and no results can be consequently
produced if a given input does not overlap with any rule antecedent in the rule base.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322335329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 J. Li et al.

Fuzzy interpolation, firstly proposed in [4], relaxes the requirement of dense rule
bases, thus to alleviates the problem of lack of knowledge in the rule base. Fundamen-
tally, fuzzy interpolation considers the neighbouring rules in the rule base by means
of fuzzified polynomial (usually linear) interpolation to produce the inference results.
Therefore, when given inputs do not overlap with any rule antecedent, a certain con-
clusion can still be obtained. Various fuzzy interpolation methods and extensions have
been developed in the literature, including the works reported in [4–11] using Mam-
dani style inference, and [3, 12] using TSK style inference. Due to the simplicity and
effectiveness in representing and reasoning on human natural language, fuzzy infer-
ence and fuzzy interpolation technologies have been successfully applied to not only
the control problems, such as the train operation system in Japan [13], intelligent home
heating controller [14], and manufacturing scheduling and planning [15, 16], but also
other decision-making problems, such as cybersecurity [17–19], business [20], com-
puter network [21], and healthcare [22].

This paper systematically reviews different types of TSK fuzzy inference approaches
and their corresponding extensions, including the TSK, IT2 TSK approach, TSK+ in-
ference approach, IT2 TSK+ inference approach. Briefly, the convention TSK and IT2
TSK approaches are only applicable to problems with dense rule bases, but TSK+ and
IT2 TSK+ can work with either dense or sparse rule bases. These approaches are then
applied to a well-known control problem, the cart centering problem with various sizes
of rule bases for empirical evaluation. The experimental results show that the TSK+ and
IT2 TSK+ inference approaches enhance the convention TSK and IT2 TSK approaches
by means of broader applicability.

The rest of this paper is structured as follows: Section 2 introduces the relevant back-
ground theory. Section 3 reviews the four different types of TSK inference approaches.
Section 4 reports the experimentation of the TSK approaches on a cart centering prob-
lem; and Section 5 concludes the paper and suggests probable future work.

2 Background

The relevant background theories, including fuzzy sets and interval type-2 fuzzy sets,
are introduced in this section.

2.1 Type-1 Fuzzy Sets

Fuzzy logic defines the concept of the fuzzy sets that use membership functions to rep-
resent the relationships between elements and their degrees of membership, expressed
in the range of r0, 1s [23]. Given a type-1 fuzzy set, denoted as A, it can be expressed
as:

A � tpx, µApxqq|@x P X,@µApxq P r0, 1su, (1)

where X is the domain of universe, µApxq represents the membership for a given x.
Assume that the conventional triangle membership is used to represent fuzzy set A as:
A � pa1, a2, a3, wq, as illustrated in Figure 1(a), where w,w P p0, 1s, is the degree of
confidence for fuzzy set A. Apprently w � 1, if A is a normal fuzzy set.
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(a) A triangular fuzzy set (b) LMF Ã and UMF Ã of a triangle
IT2 fuzzy set Ã

Fig. 1: Triangle Fuzzy Sets

2.2 Interval Type-2 Fuzzy Sets

A type-2 fuzzy set, denoted as Ã, can be represented as:

Ã �tppx, uq, µÃpx, uqq|@x P X,@u P Jx � r0, 1s, µÃpx, uq P r0, 1su , (2)

where X is the primary domain, Jx is the primary membership for a given element x,
and µÃpx, uq denotes the secondary membership. Taken the triangle IT2 fuzzy set Ã as
an example, as illustrated in Figure 1(b), It can be represented by a lower membership
function (LMF), Ã � pa1, a2, a3, wq, and a upper membership function (UMF), Ã �

pa1, a2, a3, wq. In this case, Ã �  Ã, Ã ¡, where pa1, a2, a3q and pa1, a2, a3q are
respectively the three odd points of the LMF and UMF, andw andw denote respectively
the degrees of confidence for Ã and Ã, with 0   w ¤ w � 1. The area between LMF
and UMF, illustrated in grey in Figure 1(b), thus denotes the footprint of uncertainty
(FOU), which represents the uncertainty of the fuzzy set Ã. Obviously, a larger FOU
area implies a higher level of uncertainty; and the IT2 fuzzy set degenerates to a type-1
fuzzy set when Ã coincides with Ã (i.e., the area of FOUpÃq is 0).

3 TSK Fuzzy Control

Four different TSK-style fuzzy models are expressed in this section.

3.1 Conventional Type-1 TSK Fuzzy Model

Suppose that a TSK-style fuzzy rule base comprises of n rules each withm antecedents:

R1 : IF x1 is A1
1 and � � � and xm is A1

m

THEN y � f1px
1
1, � � � , x

1
mq � p10 � p11x

1
1 � � � � � p1mx

1
m,

� � � � � �

Rn : IF x1 is An1 and � � � and xm is Anm
THEN y � fnpx

n
1 , � � � , x

n
mq � pn0 � pn1x

n
1 � � � � � pnmx

n
m,

(3)
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where pk0 and pks , (k P t1, 2, � � � , nu and s P t1, 2, � � � , mu) are constant parameters
of the linear functions of rule consequences. The consequence polynomials deteriorate
to constant numbers pk0 when the outputs are discrete crisp numbers (usually to repre-
sent symbolic values). Given an input vector pA�

1 , � � � , A
�
mq, the TSK engine performs

inference in the following steps:
Step 1: Calculate the firing strength of each ruleRk (k P t1, 2, � � � , nu) by integrat-

ing the matching degrees between its antecedents and the given inputs:

αk � µpA�
1 , A

k
1q ^ � � � ^ µpA�

m, A
k
mq, (4)

where ^ is a t-norm usually implemented as a minimum operator, and µpA�
s , A

k
sq (s P

t1, 2, � � � ,mu) is the matching degree between fuzzy sets A�
s and Aks :

µpA�
s , A

k
sq � maxtmintµA�s pxq, µAk

s
pxquu, (5)

where µA�s pxq and µAk
s
pxq are the degrees of membership for a given value x within

the domain. Note that αk � 0 if there is no overlap between the given inputs and any
rule antecedent; in this case, rule R�K will not be fired.

Step 2: Obtain the sub-output led by each rule Rk based on the given observation
(A�

1 , � � � , A
�
m):

fkpx
�
1 , � � � , x

�
mq � pk0 � pk1ReppA

�
1 q � � � � � prmReppA

�
mq, (6)

where ReppA�
s q is the representative value or defuzzified value of fuzzy set fuzzy set

A�
s , which is often calculated as the centre of gravity of the membership function.

Step 3: Determine the final output by integrating all the sub-outputs from all the
rules:

y �

ņ

k�1

αkfkpx
�
1 , � � � , x

�
mq

ņ

k�1

αk

. (7)

It is clear from Eq. 5 that the firing strength will be 0 if a given input vector does not
overlap with any rule antecedent. In this case, no rule will be fired and the conventional
TSK approach will fail.

3.2 Type-1 TSK+ Fuzzy Model

TSK+ fuzzy inference approach [3, 12] is an extension of the conventional TSK fuzzy
inference, which allows the TSK fuzzy inference to still be performed over a sparse
rule base. Note that in a sparse rule base, the given observation may not overlap with
any rule antecedent. In order to enable this extension, Eq. 5, which is used to obtain the
firing strength for overlapped rules, is replaced by

µpA,A�q �

�
1�

3̧

i�1

|ai � a�i |

3

�
� d �

minpw,w�q

maxpw,w�q
,

(8)
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where w and w� denote the degrees of confidence for fuzzy sets A and A�, respec-
tively, and d, termed as distance factor, is a function of the distance between the two
concerned fuzzy sets:

d �

$''&
''%

1 ;
a1 � a2 � a3

& a�1 � a�2 � a�3

1� 1
1�ep�s�}A,A�}�5q

; otherwise,

(9)

where }A,A�} represents the distance between the two fuzzy sets usually defined as
the Euclidean distance of their representative values, and s (s ¡ 0) is an adjustable
sensitivity factor. Smaller value of s leads to a similarity degree which is more sensitive
to the distance of the two fuzzy sets. Given a rule base as specified in Eq. 3 and an input
vector pA�

1 , � � � , A
�
mq, the TSK+ performs inferences using the same steps as those

detailed in Section 3.1 except that Eq. 5 is replaced by Eq. 8.
In the TSK+ inference model, every rule in the rule base contributes to the final

inference result to a certain degree. Therefore, even if the given observation does not
overlap with any rule antecedent in the rule base, certain inference result can still be
generated, which significantly improves the applicability of the conventional TSK in-
ference system.

3.3 Conventional Interval Type-2 TSK Fuzzy Model

Generally speaking, in an IT2 TSK fuzzy model, the inputs and all the fuzzy sets in the
rule antecedents are but not necessarily be IT2 fuzzy sets; and the consequence of IT2
TSK rules are zero or first order of polynomial functions, where the parameters can be
either crisp values or a crisp interval. Assume that an IT2 TSK rule base is comprised
of n rules as:

R1 : IF x1 is Ã1
1 and . . . and xm is Ã1

m

THEN y � f1px
1
1, � � � , x

1
mq � p̃10 � p̃11x

1
1 � � � � � p̃1mx

1
m,

. . .

Rn : IF x1 is Ãn1 and . . . and xm is Ãnm
THEN y � fnpx

n
1 , � � � , x

n
mq � p̃n0 � p̃n1x

n
1 � � � � � p̃nmx

n
m,

(10)

where Ãkj , pj P t1, . . . ,mu, k P t1, . . . , nuq is an IT2 fuzzy set regarding input variable
xj in the kth rule, ad discussed in Section 2.2. The consequence is a crisp polynomial
function y � fkpx1, . . . , xmq � p̃k0 � p̃k1x

k
1 � � � � � p̃kmx

k
m, where p̃kj are parameters

usually being crisp intervals, represented as rp̃kj , p̃
k
j s. For a given inputOpÃ�

1 , � � � , Ã
�
mq,

the steps for calculating the final inference output can be summarised as follows:
Step 1: Compute the firing strength αk of the kth rule by

α̃k �rα̃k, α̃ks � [mj�1µ̃pÃ
k
j , Ã

�
j q

�rminpminpµ̃Ãk
1
pxq, µ̃Ã�1

pxqq, ...,minpµ̃Ãk
m
pxq, µ̃Ã�mpxqqq,

minpmaxpµ̃Ãk
1
pxq, µ̃Ã�1

pxqq, ...,maxpµ̃Ãk
m
pxq, µ̃Ã�mpxqqqs,

(11)
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where [ is the meet operation. It is clear for the Eq. 11, α̃ � r0, 0s if the given input
does not overlap with any rule antecedent.

Step 2: Determine the intermediate results from individual rule based on the given
input O by:

c̃k �p̃k0 � p̃k1x
k
1 � � � � � p̃kmx

k
m

�rp̃k0 � p̃k1x1 � � � � � p̃kmxm , p̃k0 � p̃k1x1 � � � � � p̃kmxms,
(12)

where c̃k is a crisp interval that indicates the intermediate result led by rule Rk. p̃ij and

p̃ij , pj P t0, 1, � � � , kuq, denote the minimum and maximum values of crisp interval p̃ij ,
respectively.

Step 3: Generate the final output c̃ by:

c̃ �rc̃, c̃s

�

»
c̃1Prc̃1,c̃1s

. . .

»
c̃nPrc̃n,c̃ns

»
α̃1Prα̃1,α̃1s

. . .

»
α̃nPrα̃n,α̃ns

1
N
°n

i�1 α̃
i�c̃i

°n
i�1 α̃

i
.

(13)

This equation can be practically implemented by computing the two extreme values of
the crisp interval, minimum c̃ and maximum c̃, separately:

�
������c̃ �

Ļ

i�1

α̃ic̃i �
ņ

j�L�1

α̃ic̃i

Ļ

i�1

αi �
ņ

j�L�1

αj

, c̃ �

Ŗ

i�1

α̃ic̃i �
ņ

j�R�1

α̃ic̃i

Ŗ

i�1

αi �
ņ

j�R�1

αj

,

�
������ (14)

where L and R are the switch points that used to make sure c̃ is minimized and c̃ is
maximized, which can be obtained by an iterative procedure. A number of implemen-
tations on such problem have been proposed in the literature and widely used in the
real world, such as the Karnik-Mendel (KM) algorithms, enhanced Karnik-Mendel al-
gorithms (EKMA), an iterative algorithm with stop condition (ISAC), and enhanced
ISAC [24]. In particular, the Karnik-Mendel (KM) algorithm is adapted in this work
due to its efficiency, and the details of this approach is omitted here as this is beyond
the focus of this paper.

Once the output interval or special IT2 fuzzy set is generated, type reduction or
defuzzification needs to be applied. This can be readily implemented by applying a
simple average operation:

c �
c̃� c̃

2
. (15)

The same as the convention type-1 TSK fuzzy inference model, the convention IT2
TSK fuzzy inference approach is only able to work with dense rule bases; otherwise,
no rule can be fired and consequently, no result can be generated.
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3.4 Interval Type-2 TSK+ Fuzzy Model

In order to address the requirement of a dense rule base, the conventional IT2 TSK
fuzzy inference approach has also been extended to IT2 TSK+ approach to work with
the sparse rule base [25]. The working procedure of this extension follows the processes
introduced in Section 3.2, which uses Eq. 8 to obtain the firing strength of each rule
instead of the overlapped matching degree. As a result, Eq. 11 can be rewrite as:

α̃k �rα̃k, α̃ks � [mj�1µ̃pÃ
k
j , Ã

�
j q

�rµpÃk1 , Ã
�
1 q ^ � � � ^ µpÃkm, Ã

�
mq, µpÃ

k
1 , Ã

�
1 q ^ � � � ^ µpÃ�

m, Ã
�
mqs.

(16)

From here, the final crisp output for the given input can be calculated using the same
steps as detailed in Section 3.3.

4 Experimentation

A well-known cart centering problem, which has been considered by a conventional
IT2 TSK fuzzy model with a dense rule base in [26], is re-considered in this section for
evaluation and comparison purpose.

4.1 Cart Centering Control Problem

A cart can only move along a line on a plane, which assumes the plane is frictionless,
and the goal of this control problem is to drive and keep the cart to the central posi-
tion of this line from a given initial position, as illustrated in Fig. 2. The inputs of the
controller for this problem are the current position coordinates of cart x and the current
velocity of cart v, and the output of this fuzzy model is force F that should be applied
on the cart. In [26], the domain of the cart position x was restricted from �0.75m to
0.75m; the range of cart velocity v was restricted from �0.75m{s to 0.75m{s; the
output force F was defined between �0.18m{s and 0.18m{s; and the sampling time
used was t � 0.1s. This set of parameters and constraints were also utilised in this
experiment, reported herein.

Central Position

Position (x )

-0.75m -0.50m -0.25m 0m 0.25m 0.50m 0.75m

Cart
Force (F )

Velocity (v )

Fig. 2: The cart centering problem



8 J. Li et al.

4.2 Type-1 TSK Fuzzy Control

The work in [25] designed and demonstrated a 0-order IT2 TSK fuzzy model to solve
this control problem, which used five linguistic values, denoted as IT2 fuzzy sets, to
cover every domain of input variables x and v. In order to enable a direct comparison,
the design reported in the work of [25] was adopted in this experimentation. Therefore,
five type-1 fuzzy sets were created to cover the entire input domain x and v, which
are negative large (NL), negative small (NS), zero (0), positive small (PS), and positive
large (PL), as illustrated in Figure 3. And five crisp values were used as the output,
which are also represented as NL, NS, 0, PS and PL, which are shown in Table 1.
Consequently, a dense rule base, which contains in total 25 0-order TSK fuzzy rules
were generated, as listed in Table 2.

NL NS 0 PS PL

(m)-0.75 -0.5 -0.25 0 0.25 0.5 0.75

1

(a) Fuzzy partition for the domain of
Position

NL NS 0 PS PL

(m/s)-0.75 -0.5 -0.25 0 0.25 0.5 0.75

1

(b) Fuzzy partition for the domain of
Velocity

Fig. 3: Fuzzy partition on input domain

Table 1: Output values
Output Label NL NS 0 PS PL

Value -0.16 -0.08 0 0.08 0.16

Table 2: Generated dense rule base
for Type-1 TSK fuzzy model with 25
rules

Velocity Position (x)
(v) NL NS 0 PS PL
NL PL PL PL PS 0
NS PL PL PS 0 NS
0 PL PS 0 NS NL

PS PS 0 NS NL NL
PL 0 NS NL NL NL

Table 3: Sparse rule base for Type-1
TSK fuzzy model with 4 rules

Velocity (v) Position (x)
NL PL

NL PL 0
PL 0 NL

In order to evaluate the TSK+ fuzzy inference approach working with a sparse rule
base, three fuzzy sets from each domain were artificiality removed from the above ex-
ample to demonstrate an extremely sparse rule base, as shown in Figure 4. As a results,
only two boundary fuzzy sets of each input domain were kept, which is composed to
four rules, as listed in Table 3.

Given an initial state of the cart, x � 0.5m and v � 0.5m{s, the conventional TSK
and TSK+ fuzzy inference approaches were both employed on the dense and sparse rule
base, if applicable, for system performance comparison. The results are shown in the
fist and second column of Figure 6.
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NL PL

(m)-0.75 -0.5 -0.25 0 0.25 0.5 0.75

1

(a) Kept fuzzy values for Position

NL PL

(m/s)-0.75 -0.5 -0.25 0 0.25 0.5 0.75

1

(b) Kept fuzzy values for Velocity

Fig. 4: Fuzzy partition on input domain

In particular, Figure 5(a) and 5(b) demonstrated the results that produced by con-
ventional TSK with dense rule base; the results generated by TSK+ with dense rule
base are shown in Figure 5(e) and 5(f); and Figure 5(i) and 5(j) illustrated the results
that obtained by TSK+ with only 4 boundary rules.

4.3 Type-2 Fuzzy Control

In this experiment, the IT2 TSK fuzzy model was implemented. The fuzzy rule bases
detailed in Section 4.2 were used in this section, but all fuzzy sets were changed to IT2
fuzzy sets instead of the type-1 fuzzy sets, which are expressed in Figure 5. In addition,
instead of using crisp values, five crisp interval values were employed as the output
as listed in Table 4. From here, this cart centring problem can be solved by an IT2 0-
order TSK fuzzy model with a dense rule base that composed of 25 rules, as shown in
Table 2. Again, three fuzzy variables from each input domain were manually removed
to simulate the situation of lack of information for comparison purpose. In the same
the situation as described in Section 4.2, only two boundary fuzzy sets, NL and PL,
were kept on each input domain to construct an extremely sparse IT2 0-order rule base,
which only contains 4 rules, as shown in Table 3.

NL NS 0 PS PL

0
-0.45 -0.55-0.75

-0.50
-0.30 -0.20

-0.25
-0.05 0.05

0.25
0.20 0.30

0.50
0.45 0.55

0.75

1

0.9

(m)

(a) IT2 membership for the domain of Position

NL NS 0 PS PL

0
-0.45 -0.55-0.75

-0.50
-0.30 -0.20

-0.25
-0.05 0.05

0.25
0.20 0.30

0.50
0.45 0.55

0.75

1

0.9

(m/s)

(b) IT2 membership function for the domain of
Velocity

Fig. 5: Input membership functions

Table 4: Fuzzy partition of output domain
Output label Value Linguistic value

NL [-0.18 -0.14] NL
NS [-0.10 -0.06] NS
0 [-0.02 0.02] 0

PS [0.06 0.10] PS
PL [0.14 0.18] PL

The simulated results of employing the conventional IT2 TSK and IT2 TSK+ ap-
proaches over the dense and sparse rule base, if applicable, for a given initial state of
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(d) Cart velocity by
conventional IT2
TSK with dense
rule base
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(g) Cart position
by IT2 TSK+ with
dense rule base
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(h) Cart velocity
by IT2 TSK+ with
dense rule base
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(j) Cart velocity by
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(k) Cart position by
IT2 TSK+ with sparse
rule base
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(l) Cart velocity by
ITS TSK+ with sparse
rule base

Fig. 6: Performance comparison

the cart, x � 0.5m and v � 0.5m{s, are illustrated in the third and fourth column of
Figure. 6.

The experimental results show that all four approaches (conventional TSK, TSK+,
conventional IT2 TSK and IT2 TSK+) performed well in controlling the cart to the
target position from the given initial state. From Figure 5(g), it is clear that the IT2
TSK+ with the dense rule base took less time (around 2.5 seconds) to drive the cart
to the target state from the initial state with relatively smooth control, compared with
the performances produced by other three approaches (around 3 seconds), based on the
dense rule base. In term of controlling over the sparse rule base, although the TSK+ and
IT2 TSK+ approaches took much longer to drive the cart to the goal position, around 35
seconds and 17 seconds, respectively; however, considering only 4 boundary rules were
applied instead of a dense rule base with 25 rules, such performance indicates the power
of both TSK+ and IT2 TSK+ approaches in reasoning from incomplete knowledge and
system complexity reduction.
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5 Conclusion

This paper systematically reviews four different types of TSK-based fuzzy inference
approaches, including the convention TSK, TSK+, IT2 TSK and IT2 TSK+, in terms
of their effectiveness for control problems. Compared with the conventional TSK and
IT2 TSK approaches, which are only workable with dense rule bases, the TSK+ and
IT2 TSK+ are applicable to both dense and sparse rule bases significantly increasing
the applicability of the TSK-based fuzzy inference systems. The experimental results
demonstrate the power of the TSK+ and IT2 TSK+ in mobile cart control.

For future works, more real-world applications, such as truck backer-upper con-
trol [5], navigation of autonomous mobile robot control [27], powered exoskeleton
control [28], and robotic control [29], will be considered for more thorough evaluation
of the approach. And then, it is worthwhile to compare the performance between the
conventional Mamdani inference approach and the Mamdani-based fuzzy interpolation
approaches. In addition, it is interesting to investigate how the sparse rule base genera-
tion approaches, such as [30, 31], can be applied to help generate sparse rule bases, and
thus more compact TSK fuzzy models.
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